
FAST AND ROBUST SOLUTION
TECHNIQUES FOR LARGE SCALE LINEAR

LEAST SQUARES PROBLEMS

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

electrical and electronics engineering

By
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July 2020

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Orhan Arıkan(Advisor)

Sinan Gezici

Elif Vural

Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
Director of the Graduate School

ii



ABSTRACT

FAST AND ROBUST SOLUTION TECHNIQUES FOR
LARGE SCALE LINEAR LEAST SQUARES

PROBLEMS

İbrahim Kurban Özaslan

M.S. in Electrical and Electronics Engineering

Advisor: Orhan Arıkan

July 2020

Momentum Iterative Hessian Sketch (M-IHS) techniques, a group of solvers for

large scale linear Least Squares (LS) problems, are proposed and analyzed in de-

tail. Proposed M-IHS techniques are obtained by incorporating the Heavy Ball

Acceleration into the Iterative Hessian Sketch algorithm and they provide sig-

nificant improvements over the randomized preconditioning techniques. By us-

ing approximate solvers along with the iterations, the proposed techniques are

capable of avoiding all matrix decompositions and inversions, which is one of

the main advantages over the alternative solvers such as the Blendenpik and

the LSRN. Similar to the Chebyshev Semi-iterations, the M-IHS variants do not

use any inner products and eliminate the corresponding synchronization steps

in hierarchical or distributed memory systems, yet the M-IHS converges faster

than the Chebyshev Semi-iteration based solvers. Lower bounds on the required

sketch size for various randomized distributions are established through the error

analyses of the M-IHS variants. Unlike the previously proposed approaches to

produce a solution approximation, the proposed M-IHS techniques can use sketch

sizes that are proportional to the statistical dimension which is always smaller

than the rank of the coefficient matrix. Additionally, hybrid schemes are in-

troduced to estimate the unknown `2-norm regularization parameter along with

the iterations of the M-IHS techniques. Unlike conventional hybrid methods, the

proposed Hybrid M-IHS techniques estimate the regularization parameter from

the lower dimensional sub-problems that are constructed by random projections

rather than the deterministic projections onto the Krylov Subspaces. Since the

lower dimensional sub-problems that arise during the iterations of the Hybrid
M-IHS variants are close approximations to the Newton sub-systems and the ac-

curacy of their solutions increase exponentially, the parameters estimated from

them rapidly converge to a proper regularization parameter for the full problem.
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In various numerical experiments conducted at several noise levels, the Hybrid
M-IHS variants consistently estimated better regularization parameters and con-

structed solutions with less errors than the direct methods in far fewer iterations

than the conventional hybrid methods. In large scale applications where the co-

efficient matrix is distributed over a memory array, the proposed Hybrid M-IHS
variants provide improved efficiency by minimizing the number of distributed

matrix-vector multiplications with the coefficient matrix.

Keywords: Least squares, Tikhonov regularization, ridge regression, random pro-

jection, oblivious subspace embeddings, randomized preconditioning, accelera-

tion, hybrid methods.



ÖZET

BÜYÜK ÖLÇEKLİ DOĞRUSAL EN KÜÇÜK KARELER
PROBLEMLERİ İÇİN HIZLI VE GÜRBÜZ ÇÖZÜM

YÖNTEMLERİ

İbrahim Kurban Özaslan

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Orhan Arıkan

Temmuz 2020

Büyük ölçekli ve doğrusal en küçük kareler problemleri için bir grup çözücü olan

Momentum Yinelemeli Hessian Krokileme (M-IHS) teknikleri önerilmiş ve analiz

edilmiştir. Önerilen M-IHS teknikleri, Ağır Top Hızlandırmasının Yinelemeli

Hessian Krokileme algoritmasına dahil edilmesiyle elde edilir ve rastlantısal ön

koşullandırma teknikleri üzerinde önemli gelişmeler sağlar. Önerilen teknikler,

yinelemelerle birlikte yaklaşık çözücüler kullanarak tüm matris ayrışmalarından

ve ters çevirmelerden kaçınabilir, bu nedenle önerilen yöntemler büyük ölçekli

problemlerde Blendenpik ve LSRN gibi alternatif çözücülere göre daha avan-

tajlıdır. Chebyshev Yarı-iterasyonlarına benzer şekilde, M-IHS varyantları da

yinelemeler sırasında herhangi bir iç çarpım kullanmaz, dolayısıyla hiyerarşik veya

dağıtılmış bellek sistemlerinde iç çarpım hesaplamalarının neden olduğu senkro-

nizasyon adımlarını ortadan kaldırır ve önerilen M-IHS teknikleri Chebyshev

Yarı-iterasyonlarına dayalı çözümlerden daha hızlı bir şekilde çözüme yakınsar.

Çeşitli rasgele dağılımlar için gerekli olan en küçük çizim boyutu, önerilen

tekniklerin hata analizleri yoluyla belirlenmiştir. Önerilen M-IHS teknikleri

çözüm yaklaşıklaması üretmek için, daha önce önerilen yaklaşımların aksine,

katsayı matrisinin kertesinden her zaman daha küçük olan istatistiksel boyutla

orantılı bir kroki matris boyutu kullanabilir. Tüm bunlara ek olarak, `2-

norm düzenlileştirme parametresinin bilinmediği durumlarda, bu parametreyi

M-IHS tekniklerinin yinelemeleri sırasında tahmin etmek için melez şemalar

önerilmiştir. Önerilen Melez M-IHS şemaları düzenlileştirme parametresini,

gerekirci projeksiyonlar yoluyla elde ettiği Krylov Altuzayları’nı kullanarak tah-

min eden geleneksel melez yöntemlerden farklı olarak, rastgele projeksiyon-

larla oluşturduğu daha düşük boyutlu alt problemlerden tahmin eder. Melez

M-IHS yinelemeleri sırasında ortaya çıkan bu düşük boyutlu alt problemler,
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Newton alt sistemlerine yakın yaklaşıklamalar olduğundan ve bu alt problem-

lerin çözümlerinin doğruluğu katlanarak arttığından, bu alt problemlerden tah-

min edilen düzenlileştirme parametreleri hızla tam problem kullanılarak tahmin

edilen parametrelere yakınsar. Farklı gürültü seviyelerinde yapılan çeşitli sayısal

deneylerde, Melez M-IHS şemaları, doğrudan yöntemler aracılığıyla tam prob-

lemden tahmin edilen düzenlileştirme parametrelerinden daha az hataya sebep

olan parametreleri ve bu parametrelere denk gelen çözümleri geleneksel melez

yöntemlerden çok daha az yineleme gerektirerek üretmiştir. Katsayı matrisinin

bir bellek dizisi üzerinde dağıtıldığı büyük ölçekli uygulamalarda, önerilen Melez

M-IHS şemaları katsayı matrisi kullanılarak hesaplanan dağıtılmış matris-vektör

çarpımlarının sayısını en aza indirerek önemli bir verimlilik sağlamaktadır.

Anahtar sözcükler : En küçük kareler, Tikhonov düzenlileştirmesi, rastlanstısal

projeksiyon, rastgeleleştirilmiş ön şartlandırma, hızlandırma, melez metotlar.
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Chapter 1

Introduction

The foundation of linear inverse problems goes back to Babylonia, an ancient

Mesopotamian kingdom around 4000 years ago, where people know how to solve

2×2 dimensional linear system of equations [2]. Chinese mathematicians around

200 C.E. had developed techniques to solve n × n dimensional linear systems

of equations that are very similar to Gaussian Elimination [3]. Developments

in solving the linear equations did not come to fruition until the invention of

the method of Least Squares (LS) around the late 18th century. After that, the

techniques to find or to approximate a solution of a linear system that has either

a unique solution or infinite number of solutions or even that does not have any

solution have attracted more and more attention from diverse fields of science and

engineering [4]. By the advancements in digital computing around 1950s, many

algorithms developed until that time were recognized to perform poorly on well

conditioned problems due to the finite precision used to represent real numbers

in the computers. Then, importance of the direct methods that solve the linear

systems by factorizing the coefficient matrices into simpler factors started to grow

[5]; but at the same time, memory limitations in the computing devices make

iterative methods such as the Krylov Subspace techniques attractive means for

approximating the solutions [6].
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The LS solution of an n × d dimensional linear system can be found in

O(ndmin(n, d)) operations by computing Cholesky factorization or QR decom-

position of the coefficient matrix [7], but due to the quadratic dependence on the

dimensions, cost of the solution becomes excessively high for large scale problems.

Linear dependence on the dimensions might be seen as acceptable for large scale

problems and can be realizable by using the first order iterative methods that are

based on the Krylov Subspaces [8]. Starting with an approximate solution, these

methods increase its accuracy iteratively where at each iteration O(nd) operations

are computed. However, the number of iterations to obtain an accurate solution

can be extremely large for ill-posed problems. Preconditioning techniques that

aim to map the problem to a well conditioned one can be used to reduce the num-

ber of iterations, but unless the coefficient matrix has a special structure, finding

a low cost and effective preconditioning matrix is still a challenging problem [9].

When the linear system is corrupted by the measurement noise or discretization

errors, the LS methods produces unacceptably noisy reconstructions in ill-posed

problems. To provide robust solutions, an `2-norm penalty on the magnitude of

the solution is introduced to the formulation. Finding a proper regularization

parameter is another issue in the iterative solvers, which affects the number of

iterations and the error of the regularized solution. There are techniques which

estimate the regularization parameter along with the iterations. For example,

techniques such as the LSQR and the GMRES explicitly construct an orthogonal

basis for the Krylov subspace through iterations and thus allow estimation of the

regularization parameter in a lower dimensional subspace [10]. In severely ill-

conditioned problems, a suitable regularization parameter is typically estimated

in a few iterations, therefore these techniques, that are referred to as the hy-

brid methods, do not face severe complexity limitations. However, severely ill-

conditioned problems form a small subset of linear inverse problems in practice

(see for example distribution of the singular value profiles in [11]) and the number

of iterations required to estimate a robust regularization parameter through the

conventional hybrid methods can grow unpredictably large for a milder level of

ill-conditioning.
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In addition to the total operation count, there are two decisive factors for de-

termining the feasibility of the algorithms in large scale problems. The first one

is the number of matrix-vector multiplications with the coefficient matrix. In

computational environments where the coefficient matrix is stored in a memory

network, distributed computation of the matrix-vector multiplications causes pro-

hibitively long run times [12]. The second factor is the number of inner product

calculations in the iterations. Each inner product calculation corresponds to a

synchronization step in parallel computing and causes high communication costs

in distributed or hierarchical memory systems [13].

The aforementioned drawbacks of the deterministic methods can be remedied

by using the Random Projection (RP) techniques [14]. These techniques are ca-

pable of both reducing the dimensions and bounding the number of iterations

with statistical guarantees, while they are quite convenient for parallel and dis-

tributed computations. The development and the applications of the RP based

algorithms can be found in [15, 16, 17] and references therein.

In this thesis, a family of RP-based iterative solvers is proposed for large scale

linear LS problems. The asymptotic and non-asymptotic analyses show that the

iterations of the proposed solvers converge to the optimal solution of the LS

problem at an exponential rate which is independent of the spectral properties

of the coefficient matrix. Therefore, the number of iterations for the proposed

solvers to reach any level of accuracy is bounded. The proposed solvers require

only one matrix-vector multiplication per iteration with the coefficient matrix and

do not require any inner product calculations. Hence, they are efficient not only

in the sequential computing systems but also in parallel and distributed memory

environments. In the absence of the regularization parameters, hybrid schemes

are introduced for the proposed solvers. The proposed hybrid schemes, that

are based on random projections rather than the deterministic projections onto

the Krylov Subspaces, do not increase the number of accesses to the coefficient

matrix and find better regularization parameters in far fewer iterations than the

conventional hybrid methods.

3



1.1 Organization of the Thesis

Chapter 2 begins with the formulation of the LS problems, then gives an overview

of the existing deterministic approaches to find the solution and to estimate the

regularization parameter. Afterwards it reviews the applications of the RP-based

methods to the LS problems.

Chapter 3 assumes that a proper estimate of the regularization parameter is

available for the regularized LS problems, and introduces the proposed M-IHS

variants. Then, convergence analyses of the proposed solvers in both asymptotic

and non-asymptotic dimension regimes are given. A stable and efficient solver

that is particularly designed for the sub-problems that arise during the iterations

of all the M-IHS variants is also proposed in this chapter.

Chapter 4 focuses on the estimation of the regularization parameter. First,

the bottleneck in the conventional hybrid methods are discussed, and then the

RP-based hybrid schemes for the M-IHS variants are derived. Finally, Chapter 5

summarizes the findings of this thesis and discusses the future work.

1.2 Notation

Throughout the thesis, bold letters are used for vectors and matrices such as

x,b and A,S. Euclidean norm is stated as ‖ · ‖2, the weighted Euclidian norm

is shown as ‖x‖W = ‖Wx‖2 and tr (·) denotes the trace of the argument. The

superscript A† is the Moore-Penrose pseudo-inverse of A.
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Chapter 2

Review of Available Techniques

for Linear Least Squares

Problems

This chapter starts with the formulation of the LS problems, then reviews existing

deterministic approaches that are used for both construction of the solution and

estimation of the regularization parameter. The RP-based approaches used for

the LS problems are also discussed in this chapter.

2.1 Linear Least Squares Problems

The thesis focuses on fast and robust solution techniques for large scale linear

systems of equations in the form of

Ax0 + w = b (2.1)

where A is the given data or coefficient matrix, which might be an operator as

well, and b is the given measurement or observation vector. The entries of b

5



are contaminated by the measurement noise or computation/discretization errors

represented as w. The aim of the linear inverse problems is to obtain an accurate

estimate for the true input x0 by observing (A,b) pair. In this thesis we are

particularly interested in the solutions that minimize the mean squared error,

referred to as the Least Squares (LS) solution:

xLS =
(
ATA

)−1
ATb = argmin

x∈Rd

1

2
‖Ax− b‖22︸ ︷︷ ︸

f(x)

. (2.2)

In practice, due to the commonly encountered ill conditioned nature of A, the

quadratic objective function in eq. (2.2) may not produce acceptable results.

Therefore it is generally used with an additional penalty term on the magnitude

of the solution as:

x(λ) = (ATA + λId)
−1ATb = argmin

x∈Rd

1

2
‖Ax− b‖22 +

λ

2
‖x‖22︸ ︷︷ ︸

f(x,λ)

, (2.3)

which is known as the Tikhonov Regularization in applied linear algebra or the

Ridge Regression in statistics [18]. Both problems in eq. (2.2) and eq. (2.3)

frequently arises in various applications of science and engineering. For example,

they can appear in the discretization of Fredholm Integral Equations of the first

kind [19]. In those cases, the data matrix might be ill conditioned and the linear

system might be either over-determined, i.e., n ≥ d, or square. When the system

is under-determined, i.e., n < d, although sparse solutions are more popular due

to relatively recent developments in the compressed sensing literature [20], the

least norm solutions have also a considerable importance in machine learning

applications such as the Support Vector Machines [21, 22]. Solutions to the

problem in both dimension regimes, i.e, n ≥ d and n < d, are often required as

intermediate steps of rather complicated algorithms such as the Interior Point

and the ADMM that are widely used in machine learning and image processing

applications [23, 24, 25].
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2.2 Deterministic Approaches Used for the LS

Problems

In this, first a brief review of the existing techniques to find the solution in the

existence of a proper estimate of λ is presented. Then, an overview of the spectral

filtering approaches and the existing methods that are used for estimation of λ is

given.

2.2.1 Reconstruction for a given regularization parameter

If a proper estimate of the regularization parameter λ is available, the solution

x(λ) (or xLS) can be obtained by using the direct methods, which are based

on a variety of full matrix decomposition, rather than computing the matrix-

matrix multiplication and the inversion in eq. (2.3) [7]. To use an orthogonal

decomposition produces more robust solutions against rank deficiencies. However,

O(ndmin(n, d)) computational complexity of the full matrix decompositions or

n × d dimensional matrix-matrix multiplications becomes prohibitively high as

the dimensions n and d increase.

For large scale problems, linear dependence on both dimensions might seem

acceptable and can be realizable by using the first order iterative solvers that are

based on the Krylov Subspaces [18]. These methods require only a few matrix-

vector and vector-vector multiplications at each iteration, but the number of

iterations that is needed to reach a certain level of tolerance is highly sensitive to

the spectral properties of the coefficient matrix. The convergence rate of these

iterative solvers including Conjugate Gradient (CG), LSQR, LSMR, Chebyshev

Semi-iterative (CS) technique, GMRES and many others [8, 13] is characterized

by the following inequality:

∥∥xi − x(λ)
∥∥
2
≤

(√
κ(ATA + λId)− 1√
κ(ATA + λId) + 1

)i ∥∥x1 − x(λ)
∥∥
2
, 1 < i,
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where x1 is the initial guess, xi is the ith iterate of the solver and the condition

number κ(·) is defined as the ratio of the largest singular value to the smallest

singular value of its argument [26]. Since for ill conditioned matrices κ(ATA+λId)

becomes large, the rate of convergence might be extremely slow.

The computational complexity of the Krylov Subspace-based iterative solvers

is O(nd) for each iteration, which is significantly less than O(ndmin(n, d)) if the

number of iterations can be significantly fewer than min(n, d). However, in ap-

plications such as big data where A is very large dimensional, the computational

complexity is not the only metric for feasibility of the algorithms. For instance,

if the coefficient matrix is too large to fit in a single working memory and it

could be merely stored in a number of distributed computational nodes, then at

least one distributed computations of matrix-vector multiplications are required

at each iteration of algorithms such as the CGLS or the LSQR [27, 28]. There-

fore the number of iterations should also be counted as an important metric to

measure the overall complexity of an algorithm. One way to reduce the number

of iterations in the iterative solvers is to use preconditioning to transform an ill

conditioned problem to a well conditioned one with lower condition number [13].

The preconditioning can be applied to the LS problems in eq. (2.2) in two ways:

Left Preconditioning: xleft = argmin
x∈Rd

∥∥NTAx−NTb
∥∥2
2
,

Right Preconditioning: xright = argmin
x∈Rd

‖ANx− b‖22 ,

where xleft and Nxright equal to xLS if and only if the range space of NNTA

is equal to the range space of A and AT , respectively [29]. In the deterministic

settings, finding a low-cost and effective preconditioning matrix N such that

κ(AN) � κ(A) or κ(NTA) � κ(A) is still a challenging task unless A has a

special structure such as being diagonally-dominant or being a band matrix [9].

Preconditioning can be applied to the regularized LS problems in eq. (2.3) in the

same way as the un-regularized one by using the following formulation:

x(λ) = argmin
x∈Rd

‖Ax− b‖22 + λ ‖x‖22 = argmin
x∈Rd

∥∥∥∥∥
[

A
√
λId

]
x−

[
b

0

]∥∥∥∥∥
2

2

.
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In addition to the number of iterations, the number of inner products in each it-

eration also plays an important role in the overall complexity. Each inner product

calculation constitutes a synchronization step in parallel computing and there-

fore is undesirable for distributed or hierarchical memory systems [13]. The CS

technique can be preferred in this kind of applications, since it does not use any

inner products and therefore eliminates some of the synchronization steps that

are required by the techniques such as the CG or the GMRES. However, the CS

requires prior information about the ellipsoid that contains all the eigenvalues of

A, which is typically not available in practice [30].

2.2.2 Methods for estimation of the regularization param-

eter λ

We start with the review of spectral filtering approach that constitutes the foun-

dation of the methods used for the estimation of λ. Let the Singular Value De-

composition (SVD) of A be
r∑
i=1

σiuiv
T
i , where r = min(n, d), σ1 ≥ . . . ≥ σr ≥ 0

are the singular values, ui’s and vi’s are the left and the right singular vectors,

respectively. Then, the LS solution in eq. (2.2) can be expressed as

xLS =
r∑
i=1

uTi b

σi
vi =

r∑
i=1

(
xivi +

wi
σi

vi

)
,

where |xi|2 = |vTi x0|2 and |wi|2 = |uTi w|2 represent the spectral energy of the

input and the noise. If the problem is ill conditioned, the noise terms, that are

amplified by the small singular values, have the dominant contribution in xLS

resulting in unacceptably noisy reconstructions for x0
1. Filtering coefficients, φi’s

for 1 ≤ i ≤ r, can be incorporated into the spectral terms in the summation to

1Ill posedness of the problem is not only dependent on the singular values of A, but also
dependent on the input and the noise energy distributions over the singular vectors. For the
problems constructed by discretization of continuous kernels, ill posedness can be related to the
Picard Condition [31, 32].
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control the noise in the reconstruction:

x(Φ) = VΦΣ−1UTb =
r∑
i=1

(
φixivi + φi

wi
σi

vi

)
, (2.4)

where Φ = diag(φi), 1 ≤ i ≤ r [33]. In the existence of priors on the spectral

energy distributions, the filtering coefficients φi’s can be selected to minimize the

expected value of the oracle error

Φ∗ = argmin
Φ∈Rr

Ew

[
‖x0 − x(Φ)‖22

]
=

r∑
i=1

(
(1− φi)2 x2i + φ2

i

(
σw

σi

)2
)
,

where w is modeled as an independent and identically distributed (i.i.d.) random

vector with zero mean and covariance σ2
wI. Under the i.i.d. noise assumption,

the optimal filtering coefficients φ∗i ’s in terms of the mean squared error can be

found by minimizing each term in the summation as

φ∗i =
x2i

x2i +
(
σw

σi

)2 =
σ2
i

σ2
i + σ2

w

x2i

, 1 ≤ i ≤ r,

which is widely known as the Wiener Filter in a broader setting by the signal

processing community [34]. The Tikhonov regularization in eq. (2.3) corresponds

to using the coefficients φi =
σ2
i

σ2
i+λ

in eq. (2.4). If the input spectrum is uniformly

distributed over the right singular vectors, i.e., E [x2i ] = σ2
x for i = 1, . . . , r, then

the regularized LS solution x(λ�) with λ� = σ2
w

σ2
x

will achieve the minimum mean

squared error. Uniform distribution of the input spectrum might be a viable

model for a set of problems in machine learning or statistics if, for example,

the input signal x0 and A are drawn from independent distributions. However,

data obtained from sensors typically have a decaying spectral energy distribution,

since the sensors are designed to have their singular vectors associated with larger

singular values aligned with the spectrum of x0, the desired modality of the

sensing. In such cases, an apparent approximation strategy for minimizing the

mean squared error is to directly exclude the degenerate input terms that have

lower energy than the amplified noise, i.e., setting φi = 1 whenever xi ≥ σw/σi
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otherwise φi = 0, which corresponds to the Truncated SVD (TSVD) solution [33]:

x(k∗) =
k∗∑
i=1

uTi b

σi
vi with xi ≥

σw

σi
for i ≤ k∗ and φi =

1, i = 1, . . . , k∗

0, otherwise
.

(2.5)

The truncation parameter k∗ =
∑r

i φi defines the effective rank of the problem

which corresponds to the number of dimensions that the measurements are sensed

more energetically than the noise. Practically, the true input information in the

measurements that live outside the span of the first k∗ singular vectors, i.e.,∑r
i=k∗+1 σixiui, is not recoverable due to the noise amplification phenomenon.

Instead of the TSVD, if the Tikhonov regularization is used, the above approxi-

mation can be acquired in closed form solution with a trade-off: hard thresholding

of the binary coefficients in the TSVD solution is replaced by the soft threshold-

ing of the smooth sigmoid-like filtering coefficients φi =
σ2
i

σ2
i+λ

. A counterpart of

the effective rank measure is obtained by the statistical dimension of the problem

that does not explicitly require any information about the singular values [22, 35]:

sdλ(A) =
r∑
i=1

φi =
r∑
i=1

σ2
i

σ2
i + λ

= tr (PA(λ)) , (2.6)

where PA(λ) = A
(
ATA + λId

)−1
AT is a shrinkage operator called as the in-

fluence matrix [22]. The statistical dimension is widely used in the statistics to

measure the effective degrees of freedom. As shown in Chapter 3, it determines

the lower bound of the projection size for the sketched regularized LS problems

[35, 36, 37].

The TSVD and the Tikhonov approaches, for properly chosen regularization

parameters, are known to produce practically the same solutions if the input

energy distribution is in a decaying trend, i.e., the Discrete Picard Condition

is satisfied, or if the singular values of A decay at a sufficiently high rate, e.g.,

σi = O(i−α) for some α ≥ 0 or σi = O(e−βi) for some β > 1 [38]. These rates are

widely referred to as the moderate and the severe decay rates respectively in the

literature [39, 40].
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In the absence of the prior about spectral energy distributions, determination

of the Tikhonov regularization parameter is a well studied subject for the moder-

ate size problems. In the next section, we are going to examine some parameter

selection techniques that are prevalent in practice.

2.2.2.1 Risk estimators for parameter selection

Widely used techniques can be classified under two main groups according to

whether they require the noise statistics or not. The first technique that requires

the prior is the Discrepancy Principle (DP) which selects λ so that the norm of

the residual error becomes equal to the standard deviation of the noise:

‖Ax(λ)− b‖22 = nσ2
w.

The DP technique is prone to overestimate the regularization parameter, which

produces robust results against noise but increases the oracle error [33, 41, 42].

As an alternative, the parameter λ can be selected to minimize an unbiased risk

estimator of the expected oracle error:

Ew

[
‖x0 − x(λ)‖22

]
= ‖x0‖22 + Ew

[
‖x(λ)‖22 − 2x(λ)Tx0

]
.

One such scheme is the Generalized Stein’s Unbiased Risk Estimate (GSURE)

[43], which minimizes the risk estimator T (λ) = ‖x(λ)‖22 − 2g(x(λ)) such that

Ew [g(x(λ))] = Ew

[
x(λ)Tx0

]
, where different g functions for different noise dis-

tributions can be found in [42, 43]. For example, if the noise distribution is

Gaussian, then the risk estimator has the following form:

T (λ) = ‖xLS − x(λ)‖22 − σ
2
wtr
(
(Σ−2

)
+ 2σ2

wtr
(
(Σ2 + λI)−1

)
.

In our simulations with the Gaussian distributed noise, we found that as the

noise level increases, the GSURE consistently underestimates the regularization

parameter, which is also suggested by the theoretical results in [42]. In a similar

but more robust approach, referred to as the Unbiased Predictive Risk Estimate
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(UPRE), λ is selected to minimize an unbiased risk estimator of the oracle pre-

dictive error :

Ew [U(λ)] = Ew

[
‖Ax0 −Ax(λ)‖22

]
(2.7)

where U(λ) = ‖b−Ax(λ)‖22−2σ̂2
wtr (I− PA(λ))+dσ̂2

w and σ̂2
w = 1

n−d‖b−AxLS‖22
[33, 42, 44].

A commonly used technique in the second group that does not require any

prior information about the noise is the L-Curve (LC) technique which selects

λ to maximize the curvature of the L-shaped Pareto Optimality Curve plotted

‖Ax(λ)− b‖22 versus ‖x(λ)‖22 [45]. The most commonly used technique in this

group is the Generalized Cross Validation (GCV) which selects λgcv as the mini-

mizer of the the following function:

Gfull(λ) =
‖b−Ax(λ)‖22
tr (I− PA(λ))2

. (2.8)

Note that the GCV is also an unbiased predictive risk estimator [44]. As n →
∞, the minimizer of the expected value of the GCV and the UPRE functions

converges to each other [33].

Lastly, consider the case, as we will in Chapter 4, where we can access only

to the residual error that is projected onto the span of the first k left singular

vectors of A. Then, the GCV function can be modified as:

Gfull(λ, k) =

∥∥UT
k (b−Ax(λ))

∥∥2
2

tr (I− PΣk
(λ))2

, (2.9)

where UkΣkV
T
k is the truncated SVD with parameter k and λgcvk is set to the

minimizer of Gfull(λ, k). Although exclusion of the residual parts that may con-

tain informative statistics about the noise is expected to worsen the estimation,

as long as k > k∗, the risk estimator Gfull(λ, k) produces close results to the

naive GCV function Gfull(λ), since the measurements outside the span of the

first k∗ left singular vectors are already dominated by the noise and thus contain

enough information to detect a separation similar to the one given in eq. (2.5).

Performances of Gfull(λ, k) and the naive Gfull(λ) are compared in Section 4.3
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where the comparison results of the hybrid methods are presented.

Except for the LC and the GSURE, as n → ∞, expected optimal objective

function value of each technique asymptotically converges to the minimizer of

the expected oracle prediction error [33]. In Chapter 4, the GCV technique is

preferred in the proposed hybrid methods, since it does not require any prior

information and its objective function asymptotically converges to the oracle

prediction error.

2.2.2.2 Conventional hybrid methods for large scale problems

Since there is no closed form solutions, the parameter selection techniques men-

tioned in Section 2.2.2.1 require numerical minimization to approximate the op-

timal regularization parameter λ. For this purpose, however, an orthogonal ma-

trix decomposition is needed since the risk estimators depend on both x(λ) and

tr (PA(λ)). For large scale problems, the direct use of these parameter selec-

tion techniques become infeasible due to the prohibitively high complexity of the

matrix decomposition. Instead, Krylov subspace based methods can be directly

applied to the linear system without any regularization [39]. Due to the semi-

convergence behaviour, during the initial iterations of these solvers, the predic-

tion error decreases until the solution information spanned by the first k∗ singular

vectors is completely included in the constructed Krylov subspace. Then, the pre-

diction error starts to increase because of the inclusion of components with lower

Signal to Noise Ratio (SNR) to the reconstruction. Therefore, when these solvers

are terminated after a few iterations, a regularized LS solution can be obtained.

For example, if A is a smoothing operator, the iterations can easily be terminated

accurately just before the inclusion of the noise dominated components as shown

in [46]; but, except for such few cases, termination of iterations requires the use of

the parameter selection techniques mentioned earlier. A popular alternative ap-

proach to deal with the large scale problems is the hybrid methods [10, 40, 47, 48].

These techniques estimate a regularization parameter from the lower dimensional

projected problem that is obtained in the iterations of the Golub-Kahan-Lanczos

(GKL) Bidiagonalization procedure [18]. For example, at the k-th iteration of
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the LSQR, the following sub-problem is solved

yk(λ) = argmin
y∈Rk

‖Bky − β1e1‖22 + λ ‖y‖22 , (2.10)

where Bk ∈ Rk+1×k is the lower bidiagonal matrix constructed at the k-th itera-

tion of the GKL procedure initialized with b and β1 = ‖b‖2, and e1 is the first

canonical basis vector [10, 49]. The parameter λ can be estimated from this lower

dimensional sub-problem by modifying the GCV as

Gproj(λ) =

∥∥β1e1 −Bky
k(λ)

∥∥2
2

tr (Ik+1 − PBk
(λ))2

. (2.11)

Reorthogonalization steps for the GKL procedure are necessary to have the above

estimator, even though the iterative solvers used in the hybrid updates do not

require reorthogonalization [40, 46, 50]. As long as the size of the bidiagonal

matrix, k, is sufficiently small, the GCV function in eq. (2.11) can be minimized

by computing the SVD of the Bk in practice [10, 40]. The estimator Gproj is

known to overestimate the regularization parameter of the full problem. To avoid

overestimation, Weighted GCV(W-GCV) technique has been proposed in [51]:

Gproj(λ, ω) =

∥∥β1e1 −Bky
k(λ)

∥∥2
2

tr (Ik+1 − ωPBk
(λ))2

, ω ∈ [0, 1] (2.12)

with a heuristic algorithm to estimate ω. Although authors in [51] discuss some

possibilities, they did not indicated the main reason behind the overestimation

problem of the naive GCV technique applied on the bidiagonal system. We

observe that the actual reason behind the overestimation is the use of erroneously

determined degrees of freedom of the residual error as discussed in Section 4.1.
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2.3 Random Projection Based Approaches for

the Solutions of LS Problems

The randomness in these techniques is based on a particular mechanism used for

the dimension reduction that will be detailed in this section.

Definition 1. (Oblivious `2 Subspace Embedding (OSE) [52]) If a distribution

D over Rm×n satisfies the following concentration inequality

PS∼D
(∥∥UTSTSU− I

∥∥
2
> ε
)
< δ,

with ∀U ∈ Rn×k, UTU = Ik, S ∈ Rm×n, then it is called (ε, δ, k)-OSE.

The sketching matrix S sampled from the distributionD transforms any set points

in high dimensional subspace, i.e., range space of U, to a lower dimensional space

Rm in such a way that the distance between the points in the set are nearly

preserved with certain probability. Such embeddings are simple to obtain and to

apply, at the same time, extremely powerful techniques to reduce the dimensions

and to gain significant computational savings. For example, if the entries of S

is drawn from the normal distribution N (0, 1/m) then the sketch size m can be

chosen proportional to ε−2 log(1/δ) in order to obtain a (ε, δ, n)-OSE, i.e., S is

capable of transforming any set of point in the entire Rn to Rm in the sense given

in Definition 1 [53].

In the existence of a proper estimate of the regularization parameter λ, there

are two main approaches for the applications of the OSEs to the LS problems in

eq. (2.2) and eq. (2.3). In the first approach, that is referred to as the classical

sketching, the coefficient matrix A and the measurement vector b are projected

down onto a lower dimensional subspace by using a randomly constructed sketch-

ing matrix S ∈ Rm×n with m � n, to obtain efficiently an ζ-optimal solution

with high probability for the cost approximation [14, 54]:

x̃ = argmin
x∈Rd

1

2
‖SAx− Sb‖22 +

λ

2
‖x‖22 , s.t. f(x̃, λ) ≤ (1 + ζ)f(x(λ), λ). (2.13)
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For both the sparse and dense systems, in [36] the best known lower bounds on

the sketch size for obtaining an ζ-optimal cost approximation have been derived

showing that the sketch size can be chosen proportional to the statistical dimen-

sion which is defined in eq. (2.6). Although the cost approximation is sufficient

for many machine learning problems, the solution approximation which aims to

produce solutions that are close to the optimal solution is a more preferable metric

for the typical inverse problems [18, 33]. However, as shown in [55], the classi-

cal sketching is sub-optimal in terms of the minimum sketch size for obtaining a

solution approximation.

In the second approach of randomized preconditioning, by iteratively solving

a number of low dimensional sub-problems constituted by (SA,∇f(xi, λ)) pairs,

algorithms with reasonable sketch sizes obtain an η-optimal solution approxima-

tion:

‖x̂− x(λ)‖X ≤ η ‖x(λ)‖X , (2.14)

where x̂ is the solution estimate and X is a positive definite weight matrix. In

[56], OSEs have been utilized to construct a preconditioning matrix for CG-like

algorithms. For this purpose, the inverse of R-factor in the QR decomposition

of the sketched matrix SA has been used as a preconditioning matrix. Later,

implementation of similar ideas resulted in Blendenpik and LSRN which have

been shown to be faster than some of the deterministic solvers of LAPACK [29,

57]. To solve the preconditioned problems, as opposed to the Blendenpik which

uses the LSQR, the LSRN uses the CS technique for parallelization purposes and

deduce the prior information about the eigenvalues based on the results of the

random matrix theory. The main drawback of the LSRN and the Blendenpik is

that regardless of the desired accuracy η, one has to pay the whole cost, O(md2),

of a full m× d dimensional matrix decomposition, which is the dominant term in

the computational complexity of these algorithms. Moreover, in the large scale

inverse problems such as 3D imaging [58], even the decomposition of m × d-

dimensional sketched matrix may not be feasible. Iterative Hessian Sketch (IHS)

[55], which is originally designed for solving constrained convex problems, follows

a somewhat different path than the approach proposed in [56] and approximates

the Hessian of the quadratic objective given in eq. (2.2) with the sketched matrices
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to gain computational saving while calculating the matrix-matrix multiplication.

The objective function given in eq. (2.2) can be formulated as a combination of

the Hessian and the Jacobian term:

xLS = argmin
x∈Rd

1

2

∥∥A(x− x0)
∥∥2
2
− 〈AT (b−Ax0), x〉, (2.15)

where x0 is any initial vector. The IHS approximates the Hessian term and uses

the following updates to increases the accuracy of the iterations:

xi+1 = argmin
x∈Rd

1

2

∥∥∥SiA(x− xi)
∥∥∥2
2
− 〈AT (b−Axi), x〉

= xi +
(
ATSTi SiA

)−1
AT
(
b−Axi

)
. (2.16)

where Si ∈ Rm×n with m � n and E
[
STi Si

]
= In. In [17], it is suggested

that the sketching matrix Si = S can be generated once and be used for all

iterations in unconstrained problems. In that case, the updates in eq. (2.16)

can be interpreted as the Preconditioned Gradient Descent Method that uses

the sketched Hessian
(
ATSTSA

)−1
as the preconditioning matrix [1]. However,

for small sketch sizes, using the same sketching matrix might cause iterations to

diverge from the solutions [1]. To prevent this divergent behaviour, instead of

finding a proper step size, Wang et al. used the preconditioning idea of the IHS

in the CG technique and proposed the Accelerated IHS (A-IHS). Unlike gradient

descent method, the CG technique does not need parameter tuning for the step

size and enjoys faster convergence [59].
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Chapter 3

Proposed M-IHS Techniques

This chapter consists of five main sections. In Section 3.1, the M-IHS technique

is derived for highly over-determined un-regularized LS problems and its conver-

gence behaviour is analyzed through the asymptotic results in the random matrix

theory. Section 3.2 focuses on the `2-norm regularized LS problems formulated in

eq. (2.3). In this section, the theory of the M-IHS is extended to the highly under-

determined problems by using the convex duality and the Dual M-IHS technique

is derived as a result. The non-asymptotic convergence analyses of the M-IHS

and the Dual M-IHS are established. In the light of their convergence properties,

the Primal Dual M-IHS techniques are introduced to reduce the dimensions of

the coefficient matrix from both sides. In Section 3.3, an efficient and stable

sub-solver, referred to as AAb Solver, that is particularly designed for the lin-

ear systems in the form of ATAx = b which arise during the iterations of the

all M-IHS variants, is proposed. Numerical comparisons of the proposed M-IHS

techniques with the state-of-the-art solvers are given in Section 3.4. The chapter

is ended in Section 3.5 by stating the contributions and the conclusion remarks.

Note that the findings obtained in section 3.1 has been presented in ICASSP,

2019 [60]. The rest of the analyses in the chapter is presented in the pre-print

that is available in arXiv [37].
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3.1 Unregularized LS Problems: Derivation and

Asymptotic Analysis of the M-IHS Tech-

nique

In this section, we first show that if a fixed sketching matrix Si = S is used for all

iterations in eq. (2.16), then the optimal step size that maximizes the convergence

rate can be estimated by using the asymptotic results established for the singular

value distribution of the random matrices. After then, the proposed Momentum-

IHS technique is derived by extending the asymptotic analysis for the additional

momentum term that accelerates the convergence.

To minimize the quadratic objective function of the unregularized LS problems

given in eq. (2.2), instead of using IHS updates in eq. (2.16), we will use a single

sketching matrix S ∈ Rm×n, such that E
[
STS

]
= In, for all iterations in the

following damped-IHS update:

xi+1 = xi + t
(
ATSTSA

)−1
AT
(
b−Axi

)
, (3.1)

where t is the fixed step size that prevents the divergent behaviour shown in [1]

when fixed sketching matrix is used for all IHS iterations. In this way, we aim

to reduce complexity of the IHS updates given in eq. (2.16) considerably. The

following theorem states that as the dimensions of A go to ∞, the damped-IHS

given in eq. (3.1) converges to the solution xLS with an exponentially decaying

error upper bound.

Theorem 3.1.1. Let A and b be the given data in eq. (2.1). As n, d,m go to ∞
while the ratio ρ = d/m remains the same, if the entries of the sketching matrix

S are independent, zero mean, unit variance with bounded higher order moments,

then the damped-IHS updates in eq. (3.1) with the step size (1−ρ)2
1+ρ

converges to

the optimal solution xLS with the following rate

∥∥xi − xLS

∥∥
Σ
≤
(

2
√
ρ

1 + ρ

)i ∥∥x0 − xLS

∥∥
Σ
, (3.2)
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where Σ = diag(σ1, . . . , σd) and σi is the ith singular value of A.

Proof. The convergence behaviour of the damped-IHS can be investigated by find-

ing the transformation matrix between the current and the previous error vectors

through the same approach in [61]. The `2-norm of the transformation matrix

serves as a lower bound for the convergence rate. For this purpose, consider the

following transformation:

∥∥xi+1 − xLS

∥∥
2

=
∥∥∥xi + t

(
ATSTSA

)−1
AT
(
b−Axi

)
− xLS

∥∥∥
2

=
∥∥∥(Id − t

(
ATSTSA

)−1
ATA

) (
xi − xLS

)∥∥∥
2

≤ ‖
∥∥∥Id − t (ATSTSA

)−1
ATA

∥∥∥
2︸ ︷︷ ︸

T

∥∥xi − xLS

∥∥
2

Therefore, we can write following improvement by using the Gelfand Formula:

∥∥xi − xLS

∥∥
2
≤
∥∥Ti

∥∥
2

∥∥x0 − xLS

∥∥
2

(3.3)

≤
(
%(T)i + εi

) ∥∥x0 − xLS

∥∥
2
,

where lim
i→∞

εi = 0 and %(T) is the spectral radius of T. If the spectral ra-

dius is bounded, then contraction ratio (or the norm of transformation) can be

bounded as well. To find %(T), the largest and the smallest eigenvalues of matrix(
ATSTSA

)−1
ATA should be determined. Changing basis by using (ATA)−1/2

yields (ATA)1/2
(
ATSTSA

)−1
(ATA)1/2 which is a symmetric matrix similar to(

ATSTSA
)−1

ATA. By using compact SVD of A = UΣVT , we obtain

(
ATSTSA

)−1
ATA ∼ VΣVT (VΣUTSTSUΣVT )−1VΣVT (3.4)

= V(UTSTSU)−1VT .

Since V is a unitary matrix, spectral properties depends only on the eigenvalues

of (UTSTSU)−1 . The entries of SU have the same probability distribution as

the entries of S because the columns of U is an orthonormal set of vectors and

entries of S are zero mean, unit variance i.i.d. random variables. Hence, if we

generate a sketch matrix S ∈ Rm×d with the same techniques used for S, then
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SU will be statistically equivalent to S.

Based on this observation, we need to know the largest and the smallest eigen-

values of a sample covariance matrix of S ∈ Rm×d which is named as the Wishart

matrix in statistics [62]. By the Marchenko Pastur Law (MPL), the largest

and the smallest eigenvalues of the Wishart matrices bounded by the interval

[(1−
√
d/m)2, (1 +

√
d/m)2], as m→∞ while the ratio d/m remains the same

[63, 64]. Therefore, the largest and the smallest eigenvalues of
(
ATSTSA

)−1
ATA

are also asymptotically bounded by the interval [1/(1+
√
d/m)2, 1/(1−

√
d/m)2],

and the spectral radius %(T) is:

%(T) = max

{∣∣∣∣∣1− t(
1 +
√
ρ
)2
∣∣∣∣∣ ,
∣∣∣∣∣1− t(

1−√ρ
)2
∣∣∣∣∣
}
.

Here, the following choice for t yields the minimum spectral radius

t =
2 · (1 +

√
ρ)2(1−√ρ)2

(1 +
√
ρ)2 + (1−√ρ)2

=
(1− ρ)2

1 + ρ
,

which remains constant during the iterations. The resulting spectral radius is

%(T) =

∣∣∣∣∣1− (1− ρ)2

(1 + ρ)
(
1 +
√
ρ
)2
∣∣∣∣∣ =

2
√
ρ

1 + ρ
.

The Gelfand formula given in eq. (3.3) concludes the proof. The weight of the

norm is due to the change of the basis used in eq. (3.4) while finding the eigen-

values of T.

The proposed Momentum-IHS is obtained by incorporating the Heavy Ball

Acceleration [65] into the damped-IHS updates given in eq. (3.1). The Heavy

Ball Acceleration creates the momentum effect in the updates of Gradient Descent

(GD) by taking a step along with the linear combination of the two gradients:

the gradient of the objective function and the gradient of the trajectory, i.e.,

xi+1 = xi + αi∇f(xi) + βi(x
i − xi−1),
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where αi and βi are respective momentum weights. The M-IHS is obtained in the

same way by adding a momentum term into to the updates of the damped-IHS

as following:

xi+1 = xi + α
(
ATSTSA

)−1
AT
(
b−Axi

)
+ β

(
xi − xi−1

)
(3.5)

where α and β are the fixed momentum parameters that are chosen to maximize

the convergence rate.

Theorem 3.1.2. Let A and b be the given data in eq. (2.1). As n, d,m go to ∞
while the ratio ρ = d/m remains the same, if the entries of the sketching matrix

S are independent, zero mean, unit variance with bounded higher order moments,

then the M-IHS applied on the problem given in eq. (2.2) with the following mo-

mentum parameters

β = ρ, α = (1− ρ)2 (3.6)

converges to the optimal solution xLS with the following rate:

∥∥xi+1 − xLS

∥∥
Σ
≤

(√
d

m

)i ∥∥x0 − xLS

∥∥
Σ
, (3.7)

where Σ = diag(σ1, . . . , σd) and σi is the ith singular value of A.

Proof. Consider the following bipartite transformation between two consecutive

iterations of the M-IHS:[
xi+1 − xLS

xi − xLS

]
=

[
(1 + β)Id − α

(
ATSTSA

)−1
ATA −βId

Id 0

]
︸ ︷︷ ︸

T

[
xi − xLS

xi−1 − xLS

]

By using the same similarity transformation given in [59, 61], a block diagonal

form for the transformation matrix T can be found to determine its eigenvalues
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easily. For this purpose, the following change of basis will be used:

T = P−1 diag(T1, . . . ,Td)P

P =

[
Υ 0

0 Υ

]
Π,

Tk : =

[
1 + β − αµk β

1 0

]

Πk,` =


1 k odd ` = k,

1 k even ` = d+ k,

0 otherwise

(3.8)

where ΥfΥT is the eigenvalue decomposition of
(
ATSTSA

)−1
ATA and µk is

the kth eigenvalue. The characteristic polynomial of each block Tk is

x2 − (1 + β − αµk)x+ β = 0. (3.9)

If β ≥ (1−√αµk)2, then both of the roots in eq. (3.9) will be imaginary and both

will have a magnitude
√
β. If this condition is satisfied for all Tk, 1 ≤ k ≤ d, then

the contraction ratio of the whole transformation T is assured to be
√
β. Hence,

β can be selected to ensure this upper bound for all eigenvalues. For this purpose,

checking only the largest and the smallest µk values, which are determined by

the MPL in the proof of Theorem 3.1.1 as being 1/(1±√ρ)2, is sufficient:

β ≥ max

{∣∣∣∣1− √
α

1 +
√
r

∣∣∣∣ , ∣∣∣∣1− √
α

1−
√
r

∣∣∣∣}2

. (3.10)

The lower bound on β can be minimized over α by choosing α = (1−ρ)2, so that

the contraction ratio reaches its smallest value of
√
β =
√
ρ.

If the convergence rates of the damped-IHS and the M-IHS, that are given in

eq. (3.2) and eq. (3.7), are compared, then an improvement of factor 2/(1 + ρ)

can be observed. In Figure 3.1, the convergence rates of the damped-IHS and

the proposed M-IHS are numerically compared on a highly over-determined LS

problem with size 216× 500. A sketch size m = 7d is used for this experiment. A

pseudo-algorithm of the M-IHS is given in Algorithm 1.

Iterations of the M-IHS do not require any inner products or norm calcu-

lations, which avoids synchronization steps in parallel computing and results in

24



Algorithm 1 M-IHS for the LS problems given in eq. (2.2) with n� d

1: Input:SA ∈ Rm×d,x0,A,b

2: β = d/m,

3: α = (1− β)2

4: while until stopping criteria do

5: gi = AT (b−Axi)

6: (SA)T (SA)∆xi = gi (solve for ∆xi)

7: xi+1 = xi + α∆xi + β(xi − xi−1)

8: end while

overwhelming advantages over the CG or the GMRES like iterative solvers in dis-

tributed or hierarchical memory systems (see Section 2.4 of [13]). Moreover the

M-IHS does not need to compute any decomposition or a matrix inversion unlike

the state of the art randomized preconditioning techniques such as the Blenden-

pik and the LSRN. The Hessian Sketch (HS) step in Line 6 of algorithm 1 can

be computed inexactly by using a symmetric CG method for a pre-determined

tolerance. The inexact scheme is detailed more in Section 3.2.2.

0 5 10 15 20 25

-10

-5

0

5

Figure 3.1: Comparison of the convergence rates: the damped-IHS vs the M-IHS.
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3.2 Regularized LS Problems: Extensions and

Non-asymptotic Analysis of the M-IHS

Technique

In this section, we focus on the regularized LS problems given in eq. (2.3). We

derive the Dual M-IHS technique that is efficient for highly under-determined

problems. Then, we establish non-asymptotic convergence analyses of the M-IHS

and the Dual M-IHS techniques. The Primal Dual M-IHS is also derived in this

section.

3.2.1 M-IHS for regularized LS problems

The M-IHS update obtained in eq. (3.5) can be written as two step-update as

following:

∆xi = argmin
x∈Rd

‖SAx‖22 + 2
〈
∇f(xi), x

〉
,

xi+1 = xi + α∆xi + β
(
xi − xi−1

)
,

where ∇f(xi) = AT (Axi − b). For regularized LS problems it is modified as:

∆xi = argmin
x∈Rd

‖SAx‖22 + λ ‖x‖22 + 2
〈
∇f(xi, λ), x

〉
, (3.11)

xi+1 = xi + α∆xi + β
(
xi − xi−1

)
,

where the same sketching matrix S ∈ Rm×n is used for all iterations with properly

chosen momentum parameters α and β. Here, the linear system is assumed to

be strongly over-determined, i.e., n � d. By using the dual formulation, the

theory can be straightforwardly extended to the strongly under-determined case
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of d� n as well [66]. A dual of the problem in eq. (2.3) is

ν(λ) = argmin
ν∈Rn

1

2

∥∥ATν
∥∥2
2

+
λ

2
‖ν‖22 − 〈b, ν〉︸ ︷︷ ︸

g(ν,λ)

, (3.12)

and the relation between the solutions of the primal and dual problem is

ν(λ) = (b−Ax(λ))/λ⇐⇒ x(λ) = ATν(λ). (3.13)

The corresponding M-IHS update for the dual problem is:

∆νi = argmin
ν∈Rn

∥∥SATν
∥∥2
2

+ λ ‖ν‖22 + 2
〈
∇g(νi, λ), ν

〉
, (3.14)

νi+1 = νi + α∆νi + β
(
νi − νi−1

)
,

The above update is referred to as Dual M-IHS. The primal and dual solutions can

be obtained from each other through the relation in eq. (3.13). The convergence

rate of the M-IHS and the Dual M-IHS solvers together with the optimal fixed

momentum parameters that maximize the convergence rate are stated in the

Theorem 3.2.1 below.

Theorem 3.2.1. Let A and b be the given data in eq. (2.1) with singular values

σi in descending order 1 ≤ i ≤ min(n, d), x(λ) ∈ Rd and ν(λ) ∈ Rn are as

in eq. (2.3) and eq. (3.12), respectively. Let U1 ∈ Rmax(n,d)×min(n,d) consists of

the first n rows of an orthogonal basis for [AT
√
λId]

T if the problem is over-

determined, and consists of the first d rows of an orthogonal basis for [A
√
λIn]T

if the problem is under-determined. Let the sketching matrix S ∈ Rm×max(n,d) be

drawn from a distribution D such that

PS∼D
(∥∥UT

1 STSU1 −UT
1 U1

∥∥
2
≥ ε
)
< δ, ε ∈ (0, 1). (3.15)

Then, the M-IHS applied on eq. (2.3) and the Dual M-IHS applied on eq. (3.12)

with the following momentum parameters

β∗ =

(
ε

1 +
√

1− ε2

)2

, α∗ = (1− β∗)
√

1− ε2,
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converge to the optimal solutions, x(λ) and ν(λ), respectively, at the following

rate with a probability of at least (1− δ):

∥∥xi+1 − x(λ)
∥∥

D−1
λ

≤ ε

1 +
√

1− ε2
∥∥xi − x(λ)

∥∥
D−1
λ

,∥∥νi+1 − ν(λ)
∥∥

D−1
λ

≤ ε

1 +
√

1− ε2
∥∥νi − ν(λ)

∥∥
D−1
λ

,

where D−1λ is the diagonal matrix whose diagonal entries are
√
σ2
i + λ, 1 ≤ i ≤

min(n, d).

Proof. In the following proof we denote A = UΣVT as the compact SVD with

r = min(n, d). To prove the theorem for the M-IHS and the Dual M-IHS, we

mainly combine the idea of partly exact sketching, that is proposed in [36], with

the Lyapunov analysis, that we use in the asymptotic analysis of the M-IHS in

Section 3.1. In parallel to [36], we define the diagonal matrix Dλ := (Σ2+λIr)
−1/2

and the partly exact sketching matrix S as:

Ŝ =

[
S 0

0 Ir

]
, S ∈ Rm×max(n,d).

The proof for M-IHS: Let

Â =

[
UΣDλ√
λVDλ

]
=

[
U1

U2

]
, ÂT Â = Id, b̂ =

[
b

0

]
,

so that U1 is the first n rows of an orthogonal basis for [AT
√
λId]

T as required

by the condition in eq. (3.15) of the theorem. To simplify the Lyapunov analysis,

the following LS problem will be used:

y∗ = argmin
y∈Rd

∥∥∥Ây − b̂
∥∥∥2
2

(3.16)

which is equivalent to the problem in eq. (2.3) due to the one-to-one mapping

{∀x(λ) ∈ Rd | y∗ = D−1λ VTx(λ)}. For the problem in eq. (3.16), the equivalent
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of the M-IHS given in eq. (3.11) is the following update:

∆yi = argmin
y

∥∥∥ŜÂy
∥∥∥2
2
− 2〈ÂT (b̂− Âyi), y〉

yi+1 = yi + α∆yi + β(yi − yi−1)

with sketched matrix

ŜÂ =

[
SUΣDλ√
λVDλ

]
=

[
SU1

U2

]
.

Thus, we can examine the following bipartite transformation to find out the

convergence properties of the M-IHS:[
yi+1 − y∗

yi − y∗

]
=

[
(1 + β)Id − α(ÂT ŜT ŜÂ)−1 −βId

Id 0

]
︸ ︷︷ ︸

T

[
yi − y∗

yi−1 − y∗

]
.

The contraction ratio of the transformation, which is determined by the eigenval-

ues, can be found analytically by converting the matrix T into the following block

diagonal form through the same similarity transformation given in eq. (3.8):

T = P−1 diag(T1, . . . ,Td)P, Tk :=

[
1 + β − αµk β

1 0

]
(3.17)

where µk is the kth eigenvalue (ÂT ŜT ŜÂ)−1. The characteristic polynomials of

each block Tk is

x2 − (1 + β − αµk)x+ β = 0, ∀k ∈ [r].

If the following condition holds

β ≥ (1−√αµk)2, ∀k ∈ [r], (3.18)

then both of the roots are imaginary and both have a magnitude
√
β for all

µk’s. In this case, all linear dynamical systems driven by the above characteristic

polynomial will be in the under-damped regime and the contraction rate of the
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transformation T, through all directions, not just one of them, will be exactly
√
β. If the condition in eq. (3.18) is not satisfied for a µk with k ∈ [r], then the

linear dynamical system corresponding to that particular λk will be in the over-

damped regime and the contraction rate in the direction through the eigenvector

corresponding to this over-damped system will be smaller compared to the others.

As a result, the overall algorithm will be slowed down (see [67] for details). If the

condition in eq. (3.15) of Theorem 3.2.1 holds,∥∥∥ÂT ŜT ŜÂ− Ir

∥∥∥
2

=
∥∥UT

1 STSU1 + UT
2 U2 − Ir

∥∥
2

=
∥∥UT

1 STSU1 −UT
1 U1

∥∥
2
≤ ε,

then, we have the following bounds:

sup
‖v‖2=1

vT ÂT ŜT ŜÂv ≤ 1 + ε and inf
‖v‖2=1

vT ÂT ŜT ŜÂv ≥ 1− ε,

which are equivalent to:

maximize
k∈[r]

µk ≤
1

1− ε
and minimize

k∈[r]
µk ≥

1

1 + ε
.

Consequently, the condition in eq. (3.18) can be satisfied for all µk’s by the

following choice of β that maximizes the convergence rate over step size α

√
β∗ = minimize

α

(
max

{
1−

√
α√

1 + ε
,

√
α√

1− ε
− 1

})
=

ε

1 +
√

1− ε2
,

where the minimum is achieved at α∗ = 4(1−ε2)
(
√
1+ε+

√
1−ε)2 = (1 − β∗)

√
1− ε2 as

claimed.

The proof for the Dual M-IHS: The proof of the under-determined case is parallel

to the over-determined case except for the following modifications. Let

ÂT =

[
VΣDλ√
λUDλ

]
=

[
U1

U2

]
, ÂÂT = In and ŜÂT =

[
SVΣDλ√
λUDλ

]
=

[
SU1

U2

]
,

(3.19)

so that U1 is the first d rows of an orthogonal basis for [A
√
λIn] as required by

the theorem. Similar to the M-IHS case, the Lyapunov analysis can be simplified
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by using the following formulation

w∗ = argmin
w∈Rn

=
1

2

∥∥∥ÂTw
∥∥∥2
2
− 〈DλU

Tb, w〉,

which is equivalent to the dual problem in eq. (3.12) due to the one-to-one map-

ping
{
∀ν(λ) ∈ Rn | w∗ = D−1λ UTν(λ)

}
. For this form, the equivalent of the Dual

M-IHS given in eq. (3.14) is

∆wi = argmin
w

∥∥∥ŜÂTw
∥∥∥2
2
− 2〈DλU

Tb− ÂÂTwi, w〉,

wi+1 = wi + α∆wi + β(wi −wi−1).

Therefore, we can analyze the following bipartite transformation to figure out the

convergence properties of the Dual M-IHS:[
wi+1 −w∗

wi −w∗

]
=

[
(1 + β)In − α(ÂŜT ŜÂT )−1 −βIn

In 0

]
︸ ︷︷ ︸

T

[
wi −w∗

wi−1 −w∗

]
.

The rest of the proof can be completed straightforwardly by following the same

analysis steps as in the proof for the M-IHS case.

Remark 1. Theorem 3.2.1 is also valid for the un-regularized problems if, instead

of eq. (3.15), the following condition is satisfied

PS∼D
(∥∥UTSTSU− Id

∥∥
2
≥ ε
)
< δ, ε ∈ (0, 1), (3.20)

The condition in eq. (3.20) means that the largest and the smallest eigenvalues

of
(
UTSTSU

)−1
, which was asymptotically obtained by the MPL in Section 3.1,

should be in the interval [(1 + ε)−1 (1− ε)−1] with certain probability. Substituting

the bounds of this interval for the eigenvalue estimates obtained by the MPL in

Section 3.1 gives the desired result.

When the necessary conditions are met, the number of iterations needed for both

algorithms to reach a certain level of accuracy is stated in the following corollary.
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Corollary 3.2.1.1. For some ε ∈ (0, 1)/2 and arbitrary η, if the sketching matrix

meets the condition in eq. (3.15) and the fixed momentum parameters are chosen

as in Theorem 3.2.1, then the number of iterations for the M-IHS and the Dual

M-IHS to obtain an η-optimal solution approximation in `2-norm is upper bounded

by

N =

⌈
log(η) log(C)

log(ε)− log(1 +
√

1− ε2)

⌉
where the constant C, that is defined as C =

√
κ(ATA + λId) for the M-IHS and

C = κ(A)
√
κ(AAT + λIn) for the Dual M-IHS, can be removed if the semi-norm

in theorem 3.2.1 is used as the solution approximation metric instead of the `2

norm.

Corollary 3.2.1.1 is an immediate result of Theorem 3.2.1. To satisfy the condition

in eq. (3.15), a set of cases for the sketching matrix S are given in Lemma 3.2.2.

Lemma 3.2.2. If the sketching matrix S is chosen in one of the following cases,

the condition in eq. (3.15) of Theorem 3.2.1 is satisfied.

(i) S is a Sparse Subspace Embedding [16] with single nonzero element in each

column, with a sketch size

m = Ω
(
sdλ(A)2/(ε2δ)

)
where Ω(·) notation is defined as a(n) = Ω(b(n)), if there exists two integers

k and n0 such that ∀n > n0, a(n) ≥ k ·b(n). For this case, SA is computable

in O(nnz(A)) operations.

(ii) S is a Sparse Subspace Embedding with

s = Ω(logα(sdλ(A)/δ)/ε)

non-zero elements in each column where α > 2, δ < 1/2, ε < 1/2, [53, 68],

with a sketch size

m = Ω(α · sdλ(A) log(sdλ(A)/δ)/ε2).
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For this case, SA is computable in O(s · nnz(A)) operations.

(iii) S is a SRHT sketching matrix [55, 69] with a sketch size

m = Ω
(
(sdλ(A) + log(1/εδ) log(sdλ(A)/δ)) /ε2

)
.

For this case, SA is computable in O(nd log(m)) operations.

(iv) S is a Sub-Gaussian sketching matrix [14, 69] with a sketch size

m = Ω(sdλ(A)/ε2).

For this case, SA is computable in O(ndm) operations.

Proof. The following identities will be used on U1 where U,Σ, and Dλ are defined

in the proof of Theorem 3.2.1:

‖U1‖2F = ‖UΣDλ‖2F =
∥∥Σ(Σ2 + λIr)

−1/2∥∥2
F

=
r∑
i=1

σ2
i

σ2
i + λ

= sdλ(A),

and ‖U1‖22 =
σ2
1

σ2
1+λ
≈ 1 for a properly chosen regularization parameter λ. If the

sketch matrix S is drawn from a randomized distribution D over matrices Rm×n,

then by using the Approximate Matrix Property (AMM) which is given below, it

will be proven that the condition in eq. (3.15) can be met with a desired level of

probability.

As proven in [69], if a distribution D over S ∈ Rm×n has the (ε, δ, 2k, `)-OSE

moment property for some δ < 1/2 and ` ≥ 2, then it has (ε, δ, k)-AMM Property

for any A,B, i.e.,

PS∼D

∥∥ATSTSB−ATB
∥∥
2
> ε

√√√√(‖A‖22 +
‖A‖2F
k

)(
‖B‖22 +

‖B‖2F
k

) < δ.

(3.21)

The definition of the OSE-moment property can be found in [69]. As it will

be detailed next, using the AMM property in eq. (3.21), the sketch sizes in the
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statement of Lemma 3.2.2 can be found relative to the embedding size k to satisfy

the condition in eq. (3.15).

For case (i) of Lemma 3.2.2, Count Sketch with a single nonzero element in

each column and size m ≥ 2/(ε′2δ) has (ε′, δ, 2)-JL moment property [70]. JL-

Moment Property can be found in Definition 6.1 of [53]. By Theorem 6.2 in

[53]: ∥∥U1S
TSU1 −UT

1 U1

∥∥
F
< 3ε′ ‖U1‖2F = 3ε′sdλ(A) ≤ ε

for ε′ = ε/(3sdλ(A)). So, condition in eq. (3.15) holds with probability at least

1− δ, if m = O(sdλ(A)2/(ε2δ)).

For case (ii) of Lemma 3.2.2, combining Theorem 4.2 of [71] and Remark

2 of [69] implies that any sketch matrix drawn from an OSNAP [68] with the

conditions given in case (ii) of Lemma 3.2.2 satisfies the (ε′, δ, k, log(k/δ))-OSE

moment property thus the (ε′, δ, k/2)-AMM Property. Setting A = B = U1 and

k = sdλ(A)/2 in eq. (3.21) gives:

∥∥UT
1 STSU1 −UT

1 U1

∥∥
2
≤ ε′(‖U1‖22 + 2) ≤ 3ε′ ≤ ε

with probability of at least (1− δ).

Remark 2. Based on the lower bounds established for any OSE in [72], the Con-

jecture 14 in [68] states that any OSNAP with m = Ω((k + log(1/δ))/ε2) and

s = Ω(log(k/δ)/ε) have the (ε, δ, k, `)-OSE moment property for ` = Θ(log(k/δ)),

an even integer. If this conjecture is proved, then by the AMM property in

eq. (3.21), the condition in eq. (3.15) can be satisfied with probability at least

(1− δ) by using an OSNAP matrix with size m = Ω((sdλ(A) + log(1/δ))/ε2) and

sparsity s = Ω(log(sdλ(A)/δ)/ε).

For case (iii) of lemma 3.2.2, by Theorem 9 of [69], SRHT with the sketch size

given in case (iii) has the (ε′, δ, 2sdλ(A), log(sdλ(A)/δ))-OSE moment property

and thus it provides (ε′, δ, sdλ(A))-AMM property. Again, setting A = B = U1

and k = sdλ(A) in eq. (3.21) produces the desired result.
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For case (iv) of Lemma 3.2.2, the Subgaussian matrices having entries with

mean zero and variance 1/m satisfy the JL Lemma [73] with optimal sketch size

[53]. Also, they have the (ε/2, δ,Θ(log(1/δ)))-JL moment property [74]. Thus

by Lemma 4 of [69] such matrices have (ε, δ, k,Θ(k + log(1/δ)))-OSE moment

property for δ < 9−k, which means m = Ω(k/ε2). Again, by setting A = B = U1

and k = sdλ(A) in eq. (3.21) produces the desired result.

Lemma 3.2.2 suggests that in order to satisfy the condition in Theorem 3.2.1,

the sketch size can be chosen proportional to the statistical dimension of the

coefficient matrix which can be considerably smaller than its rank. Moreover,

to obtain a solution approximation, the second condition in Lemma 11 of [36] is

not a requirement, hence we obtained slightly better results for the sparse sub-

space embeddings in the cases of (i) and (ii) of Lemma 3.2.2. In the following

Corollary 3.2.2.1, we obtained substantially simplified empirical versions of the

convergence rate, momentum parameters and required sketch size by using the

MPL and approximating the filtering coefficients of Tikhonov regularization with

binary coefficients. Corollary 3.2.2.1 suggests that the ratio between the statisti-

cal dimension and the sketch size determines the convergence rate of the proposed

algorithms, which interestingly seems valid even for the sketch matrices with a

single non-zero element in each column.

Corollary 3.2.2.1. If the entries of the sketching matrix are independent, zero

mean, unit variance with bounded higher order moments, and the Truncated SVD

regularization with truncation parameter dsdλ(A)e is used, then the M-IHS and

the Dual M-IHS with the following momentum parameters

β =
sdλ(A)

m
, α = (1− β)2

will converge to the optimal solutions with a convergence rate of
√
β as m → ∞

while sdλ(A)/m remains constant. Any sketch size m > sdλ(A) can be chosen to

obtain an η-optimal solution approximation in most log(η)

log(
√
β)

iterations.
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Proof. Consider the regularized LS solution with parameter λ and the Truncated

SVD solution with parameter dsdλ(A)e:

x(λ) =
r∑
i=1

σ2
i

σ2
i + λ

uTi b

σi
vi and x† =

dsdλ(A)e∑
i=1

uTi b

σi
vi (3.22)

where ui’s and vi’s are columns of U and V matrices in the SVD. The Tikhonov

regularization with the closed form solution is preferred in practice to avoid the

high computational cost of the SVD. The filtering coefficients of the Tikhonov

regularization,
σ2
i

σ2
i+λ

, become very close to the binary filtering coefficients of the

TSVD, as the decay rate of the singular values of A increases. In these cases,

x(λ) and x† in eq. (3.22) are very close to each other (Section 4 and 5 of [38]).

Thereby, the diagonal matrix ΣD which is used in the proof of Lemma 3.2.2 can

be approximated by the diagonal matrix Γ where

Γii =

{
1 if i ≤ sdλ(A) ≤ r

0 otherwise
,

which is equivalent to replacing the Tikhonov coefficients by the binary coeffi-

cients. Then, we have the following close approximation:(
ÂT ŜT ŜÂ

)−1
=
(
DΣUTSTSUΣD + λD2

)−1
≈
(
Γ(SU)T (SU)Γ + Ir − Γ

)−1
=

[
STS 0

0 I(r−sdλ(A))

]−1
,

where S = SUΓ ∈ Rm×sdλ(A) has the same distribution as S, since UΓ is

an orthonormal transformation. By the MPL, the minimum and the maxi-

mum eigenvalues of this approximation is asymptotically bounded in the interval

[
(

1 +
√
sdλ(A)/m

)−2
,
(

1−
√

sdλ(A)/m
)−2

] as m → ∞ and while sdλ(A)/m

remains constant [63]. The rest of the proof follows from the analysis given in

the proof of Theorem 3.2.1.

Although the MPL provides bounds for the singular values of the sketching

matrix S in the asymptotic regime, i.e., as m → ∞; these bounds become very
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Figure 3.2: Comparison of the theoretical rate given in Corollary 3.2.2.1 and the empir-

ical convergence rate. The lines with different markers show the theoretical convergence

rate for different sketch sizes. Both the exact and the inexact (given in Algorithm 2)

versions of the M-IHS were run 32 times and the result of each run is plotted as a sepa-

rate line. Except for a small degradation in the dense case, setting the forcing term to

a small constant such as εsub = 0.1 is sufficient for the inexact scheme to achieve the

same rate as the exact version in these experiments.

good estimators of the actual bounds when m takes finite values, as demonstrated

in Figure 3.2. In Figure 3.2a, A ∈ R32768×1000 with κ(A) = 108 was generated

as described in Section 3.4.1. In Figure 3.2b, A ∈ R24336×1296 was generated

by using sprand command of MATLAB. We first created a sparse matrix with

size Ã ∈ R20×6 and sparsity of 15%, then the final form was obtain by taking

A = Ã⊗4 and deleting the all-zero rows. The final form of A has a sparsity ratio

of 0.1% and the condition number of κ(A) = 107. The noise level was set to

1% and the regularization parameter λ that minimizes the error ‖x0−x(λ)‖ was

used in both experiments. The resulting statistical dimensions were 119 and 410,

respectively. The rate of
√
β in Corollary 3.2.2.1 creates a remarkable fit to the

numerical convergence rate of the M-IHS variants when the momentum parameters

given in Corollary 3.2.2.1 are used even for the Tikhonov regularization. This is

because the sigmoid-like filtering coefficients in the Tikhonov regularization can

be thought of as the smoothed version of the binary coefficients in the TSVD

solution and therefore the binary coefficients constitute a good approximation for

the filtering coefficients of the Tikhonov regularization.
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Remark 3. The momentum parameters given in Corollary 3.2.2.1 maximizes the

convergence rate when the statistical dimension is known. If sdλ(A) is overesti-

mated and thus β is chosen larger than the ratio sdλ(A)/m and α = (1 − β)2,

then the convergence rate is still
√
β since the dynamical system will be still in

the under-damped regime. An empirical algorithm to estimate sdλ(A) by using

the Hutchinson-like estimators is detailed in Section 3.2.4.

3.2.2 Efficient M-IHS sub-solvers

In practice, the M-IHS and the Dual M-IHS eliminate the dominant term O(mr2)

in the complexity expression of well known solvers such as the Blendenpik and

the LSRN by approximately solving the lower dimensional linear systems in

eq. (3.11) and eq. (3.14) avoiding matrix decompositions or inversions. This

inexact sub-solver approach provides a trade-off opportunity between the com-

putational complexity and the convergence rate, which is highly desirable in very

large dimensional problems. Unfortunately, such a trade-off is not possible for

the Blendenpik and LSRN techniques which require a full matrix decomposition.

Inexact sub-solvers have been known to be a good heuristic way to create this

trade-off and they are widely used in the algorithms that are based on the New-

ton Method to solve the large scale normal equations [75]. In these inexact (or

truncated) Newton Methods, inner iterations are terminated at the moment that

the relative residual error is lower than an iteration-dependent threshold, named

as the forcing terms [76]. In the literature, there are various techniques to choose

these forcing terms that guarantee a global convergence [77], but the number of

iterations suggested by these techniques are significantly higher than the total

number of iterations used in practice. Therefore, in this work the heuristic con-

stant threshold εsub, that checks the relative residual error of the linear system

[78], is used.

Efficient but approximate solutions to the sub-problems in eq. (3.5) and

eq. (3.14) can be obtained by Krylov subspace based first order methods. How-

ever, LSQR-like solvers that are adapted for the normal equations would require
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Algorithm 2 M-IHS (for n ≥ d)

1: Input : A, b, m, λ, x1, sdλ(A), εsub complexity

2: SA = RP fun(A,m) C(m,n, d)

3: β = sdλ(A)/m O(1)

4: α = (1− β)2 O(1)

5: while until stopping criteria do

6: gi = AT (b−Axi)− λxi O(nd)

7: ∆xi = AAb Solver(SA, gi, λ, εsub) O(md)

8: xi+1 = xi + α∆xi + β(xi − xi−1) O(d)

9: end while

Algorithm 3 Dual M-IHS (for n ≤ d)

1: Input : A, b, m, λ, sdλ(A), εsub complexity

2: SAT = RP fun(AT ,m) C(m,n, d)

3: β = sdλ(A)/m O(1)

4: α = (1− β)2 O(1)

5: ν0 = 0 O(1)

6: while until stopping criteria do

7: gi = b−AATνi − λνi O(nd)

8: ∆νi = AAb Solver(SAT , gi, λ, εsub) O(mn)

9: νi+1 = νi + α∆νi + β(νi − νi−1) O(n)

10: end while

11: xN+1 = ATνN+1 O(nd)

computations of 4 matrix-vector multiplications per iteration. On the other hand,

due to the explicit calculation of (SA)T (SA)z, the symmetric CG, that would

require only 2 matrix-vector multiplications per iteration, might be unstable for

the ill-conditioned problems [49]. Therefore, in Section 3.3, we propose a sta-

ble sub-solver, referred to as AAb Solver, which is particularly designed for the

problems in the form of ATAx = b. The AAb Solver is based on the GKL

Bidiagonalization and it uses a similar approach that the LSQR uses on the LS

problems. In addition to the stability advantage over the symmetric CG tech-

nique, AAb Solver produces a bidiagonal representation of sketched matrix as a

byproduct of the iterations. This bidiagonal form can be exploited to estimate

parameters including λ and sdλ(A) [10]. The inexact versions of the M-IHS and
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the Dual M-IHS that use AAb Solver are given in Algorithm 2 and Algorithm 3,

where RP fun represents the function that generates the desired sketched matrix

such that E
[
STS

]
= Im whose implementation details can be found in the rel-

evant references in Lemma 3.2.2. Number of operations required at each step

is stated at the right most column of the algorithms, where C(·) represents the

complexity of constructing the sketching matrix as given in Lemma 3.2.2. Set-

ting the forcing term εsub, for instance, to 0.1 for all iterations is enough for the

inexact M-IHS variants to converge at the same rate
√
β as the exact versions as

demonstrated in Figure 3.2.

3.2.3 Two-stage sketching for the M-IHS variants

Lemma 3.2.2 suggests that if the statistical dimension is several times smaller than

the dimensions of A, then it is possible to choose a substantially smaller sketch

size than min(n, d). If this is the case, then the quadratic objective functions

in eq. (3.11) and eq. (3.14) become strongly under-determined problems, which

makes it possible to approximate the Hessian of the objective functions one more

time by taking their convex dual as it has been done in the Dual M-IHS. This ap-

proach is similar to the approach where the problems in eq. (3.11) and eq. (3.14)

are approximately solved by using the AAb Solver, with an additional dimension

reduction. As a result of two Hessian sketching, the linear sub-problem whose di-

mensions are reduced from both sides can be efficiently solved by the AAb Solver

for a pre-determined tolerance as before. For the details of this two-step approach,

consider the following dual of the sub-problem in eq. (3.5)

z∗ = argmin
z∈Rm

1

2

∥∥ATSTz +∇f(xi, λ)
∥∥2
2

+
λ

2
‖z‖22︸ ︷︷ ︸

h(z,xi,λ)

, (3.23)
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which is a strongly over-determined problem if m� min(n, d). Hence, it can be

approximately solved by the M-IHS updates as

∆zj = argmin
z∈Rm

∥∥WATSTz
∥∥2
2

+ λ ‖z‖22 + 2
〈
∇zh(zj,xi, λ), z

〉
, (3.24)

zj+1 = zj + α2∆zj + β2
(
zj − zj−1

)
.

After M iterations, the solution of eq. (3.5) can be recovered by using the relation

in eq. (3.13) as ∆xi = (∇f(xi, λ) − ATSTzM)/λ. The same strategy can be

applied on the sub-problem in eq. (3.14) by replacing SA with SAT and∇f(xi, λ)

with ∇g(νi, λ). The resulting algorithms, referred to as Primal Dual M-IHS, are

given in Algorithm 4 and Algorithm 5, respectively.

Algorithm 4 Primal Dual M-IHS (for n ≤ d)

1: Input : A, b, m1, m2, λ, sdλ(A), εsub complexity

2: SAT = RP fun(AT ,m1) C(m1, n, d)

3: WAST = RP fun(SAT ,m2) C(m1,m2, n)

4: β` = sdλ(A)/m`, ` = 1, 2 O(1)

5: α` = (1− β`)2, ` = 1, 2 O(1)

6: ν1,0 = 0, z1,0 = 0 O(1)

7: for i=1:N do

8: bi = b−AATνi − λνi O(nd)

9: for j=1:M do

10: gi,j = SAT (bi −ASTzi,j)− λzj O(nm1)

11: ∆zi,j = AAb Solver(WAST ,gi,j, λ, εsub) O(m1m2)

12: zi,j+1 = zi,j + α2∆zi,j + β2(z
i,j − zi,j−1) O(m1)

13: end for

14: ∆νi = (bi −ASTzi,M+1)/λ, zi+1,0 = zi,M+1 O(nm1)

15: νi+1 = νi + α1∆νi + β1(ν
i − νi−1) O(n)

16: end for

17: xN+1 = ATνN+1 O(nd)

The two-stage sketching idea presented here is first suggested by Zhang et al.

in [1]. They used the A-IHS technique to solve the sub-problems that arise dur-

ing the iterations of the Accelerated Iterative Dual Random Projection (A-IDRP)

which is a dual version of the A-IHS. However, since both of the A-IHS and the
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Algorithm 5 Primal Dual M-IHS (for n ≥ d)

1: Input: A, b, m1, m2, λ, x
1, sdλ(A), εsub complexity

2: SA = RP fun(A,m1) C(m1, n, d)

3: WATST = RP fun(SA,m2) C(m1,m2, d)

4: β` = sdλ(A)/m`, ` = 1, 2 O(1)

5: α` = (1− β`)2, ` = 1, 2 O(1)

6: x0 = 0, z1,0 = 0 O(1)

7: for i=1:N do

8: bi = AT (b−Axi)− λxi O(nd)

9: for j=1:M do

10: gi,j = SA(bi −ATSTzi,j)− λzi,j O(dm1)

11: ∆zi,j = AAb Solver(WATST ,gi,j, λ, εsub) O(m1m2)

12: zi,j+1 = zi,j + α2∆zi,j + β2(z
i,j − zi,j−1) O(m1)

13: end for

14: ∆xi = (bi −ATSTzi,M+1)/λ, zi+1,0 = zi,M+1 O(dm1)

15: xi+1 = xi + α1∆xi + β1(x
i − xi−1) O(d)

16: end for

A-IDRP are based on the CG technique, the convergence rate of the proposed

A-IHS, A-IDRP and the primal dual algorithm called as Accelerated Iterative

Primal Dual Sketch (A-IPDS) are all degraded in the LS problems with high con-

dition numbers due to the instability issue of the symmetric CG technique [49].

Even if the regularization is used, still the performance of the solvers proposed

in [1] are considerably deteriorated compared to the other randomized precondi-

tioning techniques as shown in Section 3.4. Further, applying the preconditioning

idea of IHS to the stable techniques such as the LSQR that are adapted for the

LS problem is not so efficient as the M-IHS variants, because they require two

preconditioning systems to be solved per iteration.

The computational saving when we apply a second dimension reduction as

in the Primal Dual M-IHS may not be significant due to the second gradient

computations in Line 10 of the given algorithms, but the lower dimensional sub-

problems that we obtain at the end of the second sketching can be used to es-

timate several parameters including the regularization parameter as detailed in

Chapter 4.
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The Primal Dual M-IHS techniques are extension of the inexact schemes.

Therefore, their convergence rates depend on their forcing terms that are used to

stop the inner iterations [77]. In [1], an upper bound for the error of the primal

dual updates is proposed. However as it is detailed in Appendix A, there are

several inaccuracies in the development of the bound. Therefore, finding a prov-

ably valid lower bound on the number of inner loop iterations, that guarantee

a certain rate of convergence at the main loop, is still an open problem for the

primal dual algorithms.

3.2.4 Estimation of the statistical dimension

The statistical dimension sdλ(A) in Algorithm 2, 3, 4 and 5 can be estimated by

using a Hutchinson-like randomized trace estimator [79]. Alternatively, sdλ(A)

can be estimated by using the algorithm proposed in [36] within a constant factor

in nnz(A) time with a constant probability, if sdλ(A) ≤ ξ where:

ξ = min{n, d, b(n+ d)1/3/poly(log(n+ d))c}.

However, due to the third order root and the division by typically higher than

a sixth order polynomial, ξ becomes very small and the proposed algorithm in

[36] can only be used when the singular values of A decay severely/exponentially.

Therefore, we preferred to use the heuristic trace estimator in Algorithm 6, where

the input matrix SA can be replaced with SAT or even with WATST and WAST

according to the requirements of the algorithm used. Any estimator in [79] can

be substituted for the Hutchinson Estimator and the number of samples T can

be chosen accordingly. In the conducted experiments with various singular value

profiles, small samples sizes such as 2 or 3 and εtr = 0.5 was sufficient to obtain

satisfactory estimates for sdλ(A) used in Corollary 3.2.2.1. Note that, as long as

sdλ(A) is overestimated, the convergence rates of the proposed algorithms will be

strictly controlled by β as in Corollary 3.2.2.1.
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Algorithm 6 Inexact Hutchinson Trace Estimator

1: Input: SA ∈ Rm×d, λ, T, εtr complexity
2: v` = {−1,+1}d, ` = 1, . . . , T O(Td)
3: τ = 0 O(1)
4: for i = 1:T do
5: zi = AAb Solver(SA,vi, λ, εtr) O(md)
6: τ = τ + λ〈vi, zi〉 O(d)
7: end for
8: Output: ŝdλ = d− τ/T O(1)

3.2.5 Complexity analyses of the proposed algorithms

The iterations of both the exact and inexact M-IHS and Dual M-IHS consist of 4

stages with the following computational complexities:

Stage Exact schemes Inexact schemes

generation of SA or SAT C(n, d,m) C(n, d,m)

QR (R− factor only) O(mr2) −
sdλ(A) est. O(Tr2) Oεtr(Tmr)

N iterations O(N(nd+ r2)) O(Nnd) +Oεsub(Nmr)

Here, N is the number of iterations, T is the number of samples used in

Hutchinson-like estimators, r = min(n, d) and C(·) is the complexity of gen-

erating the sketched matrix which is noted in Lemma 3.2.2. Also, we assumed

that the sub-problems in eq. (3.5) and eq. (3.14) are solved by using the QR

decomposition for the exact schemes. Notation Oε(·) is used to indicate that

complexity depends on the tolerance ε that is used to terminate the sub-solver

iterations. The major advantage of the proposed techniques over the current RP

solvers is the ability of avoiding the complexity of the QR step. In the inexact

M-IHS variants, the third order complexity O(mr2) of matrix decomposition or

inversion are avoided. For the applications where m grows larger, this saving

become critical as shown in Section 3.4.5. Since the sketch size m can be chosen

proportional to the statistical dimension, the memory space required by all the

above techniques is O(sdλ(A)r).
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In a similar manner, the complexity of each stage in the Primal Dual M-IHS

variants is:

Stage Exact schemes Inexact schemes

sketching C(n, d,m1) + C(r,m1,m2) C(n, d,m1) + C(r,m1,m2)

QR or SVD O(m2m
2
1) −

sdλ(A) est. O(Tm2
1) Oεtr(Tm1m2)

N iterations O(Nnd+NM(m1r +m2
1)) O(N(nd+Mm1r)) +Oεsub(NMm1m2)

Here, N and M denote number of outer and inner iterations, respectively. Unless

Mm1 � r, the Primal Dual M-IHS variants do not provide significant saving

over the M-IHS or the Dual M-IHS. However, when n and d scale similar and

the ratio sdλ(A)/r is very small, if the decomposition of the sketched matrix is

required for parameter estimation purpose as discussed in Chapter 4, then due to

the decomposition of m2 ×m1-dimensional doubly sketched matrix, the Primal

Dual M-IHS variants require far fewer operations then any exact schemes which

need to compute the decomposition of r×m1 dimensional sketched matrix. Such

conditions are prevalent, for example, in image de-blurring or seismic travel-time

tomography problems [11]. The memory space required by Primal Dual M-IHS

techniques is O(m1r +m1m2).

Depending on the type of choice of the sketching used, the complexity of

the proposed techniques vary significantly. For dense coefficient matrices while

the SRHT matrices has lower run time in sequential environments, Gaussian

matrices would be more efficient in parallel computing. If the coefficient matrix

is sparse, then the data oblivious sketching types such as OSNAP or CountSketch

matrices would be effective choices with run time of O(nnz(A)). The proposed

techniques can be still used even if the coefficient matrix is an operator, in this

case Gaussian or sparse embeddings can be utilized. If the coefficient matrix

is sparse or an operator that allows fast matrix-vector computations, then both

exact and inexact schemes are automatically sped up due to the saving in the

gradient computation. For instance, in the sparse case, complexity of the gradient

computation is reduced from O(nd) to O(nnz(A)).
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3.3 A solver for linear systems in the form of

ATAx = b

The linear sub-problems in the form of (ATA+λI)x = b, whose solutions are re-

quired by all four of the proposed M-IHS variants, can be approximately solved by

using the bidiag2 procedure described in [49], which produces an upper bidiagonal

matrix as:

PT
kAQk = Rk =


ρ1 θ2

. . . . . .

ρk−1 θk

ρk

 ∈ Rk×k, (3.25)

where Pk ∈ Rn×k, Qk ∈ Rd×k and PT
kPk = QT

kQk = Ik. The upper bidiagonal

decomposition Rk is computed by using the Lanczos-like three term recurrence:

AQk = PkRk

ATPk = QkR
T
k + θk+1q

k+1eTk
=⇒

Aq1 = ρ1p
1,

ATpj = ρjq
j + θj+1q

j+1 j ≤ k,

Aqj = θjp
j−1 + ρjp

j, j ≤ k,

(3.26)

where θj’s and ρj’s are chosen so that ‖qj‖2 = ‖pj‖2 = 1, respectively. Note that

Pk and Qk are not needed to be orthogonal in AAb Solver, therefore we do not

need any reorthogonalization steps. Unlike the LSQR, we choose θ1q
1 = b with

θ1 = ‖b‖2 so that the columns of the matrix Qk constitute an orthonormal basis

for the k-th order Krylov Subspace:

span{q1, . . . ,qk} = Kk(ATA, b) = Kk(ATA + µId, b), ∀µ ∈ R+.

Since the Krylov Subspaces is invariant under a constant shift, regularization does

not affect this property. In the k-th iteration of the proposed AAb Solver, let the

solution estimate of the linear system be xk = Qky
k for some vector yk ∈ Rk,

i.e., xk ∈ Kk(ATA, b), then we have:

(ATA + λId)Qky
k = b
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which implies

Rky
k = R−Tk QT

kb
(a)
= θ1R

−T
k e1,

where (a) is due to the choice of q1 and Rk is obtained by applying a sequence of

Givens rotation on [RT
k

√
λIk]

T in order to eliminate the sub-diagonal elements

due to the regularization [80]. One instance of this elimination procedure is
ρk θk+1

0 ρk+1

0 0

0
√
λ

→

ρk ckθk+1

0 ρk+1

0 0

0 λk+1

→

ρk θk+1

0 ρk+1

0 0

0 0

 next−−−−−−→
iteration


ρk+1 θk+2

0 ρk+2

0 0

0
√
λ

 ,

where ck = ρk/ρk, sk = λk/ρk, θk+1 = ckθk+1, λk+1
2

= λ + (skθk+1)
2 and ρk+1 =√

ρk+1
2 + λk+1

2
. Since Rk is an upper bidiagonal matrix, the inverse always

exists and fk := R−Tk e1 can be computed analytically as:

φ1 =
θ1
ρ1

and φk = −φk−1
θk
ρk

where fk = [φ1, . . . , φk]
T . (3.27)

Furthermore, the solution at the k-th iteration, xk = QkR
−1
k fk, can be obtain

without computing any inversions by using the forward substitution. Define Dk =

QkR
−1
k :

[Dk−1, dk]

[
Rk−1 ek−1θk

0 ρk

]
= [Qk−1, qk]

Dk−1Rk−1 = Qk−1

θkd
k−1 + ρkd

k = qk


dk = (qk − θkdk−1)/ρk
xk = xk−1 + φkd

k,

and the relative residual error that will be used as a stopping criterion can be

found as:

‖ATAxk + λxk − b‖22 = ‖ATAQky
k + λQky

k − b‖22 = ‖ATPkRky
k − b‖22

= ‖
(
QkR

T
k + θk+1q

k+1eTk
)

Rky
k − b‖22

(i)
= ‖RT

kRky
k−QT

kb‖22 +‖θk+1q
k+1qTkRky

k−
(
I−QkQ

T
k

)
b‖22

=
∣∣φkθk+1

∣∣ = |φk+1ρk+1|.
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The first norm in (i) is zero since the linear system is always consistent. The

second term in the second norm is also zero, since b ∈ span(Qk) by the initial

choice of θ1q
1 = b. By definition, fk = Rky

k gives the final results. The overall

algorithm is given in Algorithm 7. The AAb Solver is also a Krylov Subspace

method, therefore, it finds the solution in at most min(n, d,m) iterations in the

exact arithmetic, but far fewer number of iterations is sufficient for our purpose.

Algorithm 7 AAb Solver (for problems in the form of (ATA + λI)x = b)

1: Input: A ∈ Rm×n,b, λ, ε complexity
B choose ρ’s and θ’s to make ‖p‖2 = ‖q‖2 = 1

2: θ1q = b 3n
3: ρp = Av (m+ 3)n
4:

5: ρ̄ =
√
ρ2 + λ, c = ρ/ρ̄, s =

√
λ/ρ̄, φ = θ1/ρ̄ O(1)

6: d = q/ρ̄ n
7: x = φd n
8: while t ≥ ε do
9: θq := ATp− ρq (m+ 5)n

10: ρp := Aq− θp m(n+ 5)
11:

12: λ̄2 := λ+ (sθ)2, θ̄ = cθ O(1)

13: ρ̄ :=
√
ρ2 + λ̄2, c = ρ/ρ̄, s = λ̄/ρ̄ O(1)

14:

15: d := (q− θ̄d)/ρ̄ 3m
16: φ := −φθ̄/ρ̄ O(1)
17: x := x + φd 2n
18: t = |φρ̄|/θ1 O(1)
19: end while

Efficient solutions for linear systems in the form of (A + λI)x = b for a

symmetric matrix or (ATA + λI)x = b for a rectangular matrix have been well

studied subject. In the first case, Lanczos tridiagonalization algorithm can be

used for deriving a stable solver [81]. In the second case, which is our main

concern, if the lower bidiagonalization processes (bidiag1 in [49]) is used such as

in [82], then a tridiagonal system in the form of BT
kBky

k = θ1e1 must be solved

where Bk ∈ Rk+1×k is a lower bidiagonal matrix. This system can be solved by

first eliminating the lower diagonal elements in the tridiagonal matrix BT
kBk and

then by using forward substitution. However, the condition number of BT
kBk is
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the square of the condition number of Bk and thus increases the instability of

the operations in the inexact arithmetic. Therefore, in the proposed AAb Solver,

we use upper bidiagonalization process to solve a tridiagonal system in the form

of RT
kRky

k = θ1e1. The major advantage of this form over the one obtained

by lower bidiagonal matrix Bk is that R−Tk e1 can be calculated analytically as

in eq. (3.27). Then the solution yk can be obtained via backward substitution.

In this way, we avoid both squaring the condition number and the elimination

process of the lower diagonal entries. As a result, we obtain a solver with better

stability properties and with slightly lower computational requirements.

3.4 Numerical Experiments and Comparisons

We compare the operation counts required by the algorithms to obtain a certain

level of accuracy in the solution approximation metric. For a fair comparison,

we have implemented all the proposed algorithms in this manuscript as well as

those that are used for the comparisons in MATLAB which can be found in the

following link: https://github.com/ibrahimkurban/M-IHS.

3.4.1 Experiment setups

The coefficient matrix A ∈ Rn×d was generated for various sizes as follows: we

first sampled the entries of A from the distributionN (1d,Γ) where Γij = 5·0.9|i−j|

so that the columns are highly correlated with each other. Then by using the

SVD, we replaced the singular values with philips profile provided in RegTool [41].

Unless indicated otherwise, we scaled the singular values to set the condition

number κ(A) to 108 and we used the same input signal provided by RegTool.

In this way, we have obtained a challenging setup for any first order iterative

solvers to compare their performances. In all the experiments, the same setup

has been used unless indicated. We counted the number of operations according

to Hunger’s report [83]. All the reported results have been obtained by averaging

over 32 MC simulations.
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3.4.2 Compared methods and their implementation de-

tails

In the conducted comparison study we used a total of 7 previously proposed

techniques that can be briefly described as follows. The Accelerated Random-

ized Kaczmarz (ARK) uses Nesterov’s method for accelerating the randomized

Kaczmarz algorithm [84, 85]. The CGLS is an adaptation of the CG for the LS

problems [18]. The rest of the techniques are the state of the art randomized

preconditioning techniques which can reach any level of desired accuracy within

a bounded number of iterations. The Blendenpik uses the R matrix in the QR

decomposition of the sketched matrix SA as the preconditioning matrix for the

LSQR algorithm just like the method proposed by Rokhlin et al. [56, 57] and

it uses Randomized Orthonormal System (ROS) to generate the sketched matrix

[14]. The LSRN uses the V matrix in the SVD similar to the Blendenpik. In

spite of its high running complexity, for parallelization purposes, the Gaussian

sketch matrices are preferred in the LSRN. In addition to the LSQR, also the

CS can be preferred in the LSRN as the core solver in distributed computational

environments [29]. The IHS uses the sketched Hessian as the preconditioning

matrix for the Gradient Descent. The Accelerated IHS (A-IHS) uses this idea for

the CG algorithm in over-determined problems. The dual counter-part of the A-

IHS algorithm, A-IDRP, is shown to be faster than the Dual Random Projection

algorithm proposed in [86], so we did not include the DRP in the simulations.

Additionally, we include a CS variant of the IHS (IHS-CS) to the comparisons:

we combined the randomized preconditioning idea of the IHS with the precondi-

tioned CS method [13]. We found the bounds for the eigenvalues in the same way

as in the LSRN. We have solved the low dimensional sub-problems required by

all the IHS variants by taking the QR decomposition, but for inexact schemes,

we have used the proposed AAb Solver with a constant forcing term. Although

the inexact approach is also applicable for the accelerated algorithms proposed

in [1], we did not include them in the simulations since their exact versions are

outperformed by the Exact M-IHS variants in all settings. Except for the LSRN

variants which use Gaussian sketch matrices, we used Discrete Cosine Transform

in the ROS for all the compared techniques.
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3.4.3 Results obtained for un-regularized LS problems
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Figure 3.3: Performance comparison of the M-IHS, ARK and CGLS on an un-
regularized LS problem with size 216 × 500.

In the first experiment, we did not include noise in the linear system to em-

phasize the convergence rate that the algorithms can provide in such severely ill

posed problems. To make the problem more challenging, for this experiment only

we sampled the input vector x0 from uniform distribution Uni(−1, 1). In such

scenarios, convergence rates of Krylov subspace-based iterative solvers without

preconditioning fall to its minimum value since the energy of the input is dis-

tributed equally over the range space of A.

In Figure 3.3, the M-IHS is compared with the ARK and the CGLS on a

highly over-determined problem for a set of different condition numbers. When

the condition number κ of the coefficient matrix A increases, convergences of the

CGLS and the ARK degrade considerably while the performance of the M-IHS

technique remains unaffected. Although the ARK performs better than the CG

for low κ values, its convergence is influenced worse than the CG by the increasing

condition number. The M-IHS requires substantially less operations than the ARK

and the CGLS that is unable to converge even in d iterations due to round-off

errors.

51



10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12 12.2

-10

-8

-6

-4

-2

0

2

4

6

8

10.74 10.76 10.78 10.8 10.82 10.84

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

12.07 12.075 12.08 12.085 12.09

0

1

2

3

4

5

6

Figure 3.4: Performance comparison on an un-regularized LS problem with size 216 ×
2000. In order to compare the convergence rates, number of iterations for all solvers are

set to N = 100 with the same sketch size: m = 4000. According to the Corollary 3.2.2.1,

we expect the M-IHS to reach an accuracy:
∥∥xN − x0

∥∥
2
≤ κ(A) ‖x0‖2

(
1
/√

2
)N

=

9 · 10−8, which closely fits to the observed case.

In Figure 3.4, the M-IHS is compared with the randomized preconditioning

techniques described above. Due to high running time of the Gaussian sketches,

O(mnd), the LSRN variants require more operations (for the size of the problems

considered here approximately 10 times larger) than the others. Due to the lack

of inner product calculations, the M-IHS requires slightly fewer operations than

the Blendenpik, nonetheless, it reaches to the same accuracy with the LSRN-

LSQR. The A-IHS algorithm has the worst performance which is expected in the

un-regularized problems, since it is adapted on the CG technique that can be

unstable for the un-regularized LS problems due to the high condition number

[49]. The convergence of the CS-based techniques, both of the IHS and the

LSRN variants, are substantially slower than the M-IHS, which suggests that the

M-IHS algorithm can take the CS’s place in those applications where parallel

computation is an option.
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3.4.4 Results obtained for regularized LS problems

We tested robustness of the methods against noise on regularized LS problems by

using an additive i.i.d. Gaussian noise at level ‖w‖2
/
‖Ax0‖2 = 1%. For this pur-

pose, the optimal regularization parameter that minimizes the error ‖x(λ)− x‖2
is provided to all techniques. Each technique is allowed to conduct a total of 20

iterations. Results for strongly over-determined and strongly under-determined

cases can be seen in Figure 3.5 and Figure 3.6, respectively. We used a sketch

size of m = min(n, d) to emphasize the promise of the RP techniques although

such sizes are not applicable for the LSRN variants. Even if the sketch size has

been increased further, the convergence of the LSRN variants were considerably

slower than the others; so we leave out the LSRN variants from the comparison

set in the regularized settings. Also, in the regularized setup, the A-IHS and

A-IDRP methods are slower than the Blendenpik, IHS-CS and M-IHS variants.

Besides, the inexact schemes proposed for the M-IHS and Dual M-IHS require

significantly less operations to reach to the same level of accuracy as their ex-

act versions. Although the inexact schemes require approximately 10 times less

operations then their exact versions in these setups; the saving gets larger as

the sketch size increases as examined in Section 3.4.5, because while any full de-

composition requires O(mr2) operations, approximately solving the sub-problem

requires only O(mr) operations.

As long as the statistical dimension of the problem is small with respect to the

dimensions of coefficient matrix A, Lemma 3.2.2 implies eligibility of sketch sizes

that are smaller than the rank, m ≤ min(n, d). This implication can be verified

in Figure 3.7 on which we showed the performance of the Primal Dual M-IHS

techniques. Here, the inexact schemes of the M-IHS and Dual M-IHS use a sketch

size m = 2 ·sdλ(A). The primal dual schemes use m1 = m2 = 2 ·sdλ(A) except for

the Primal Dual M-IHS shown as a green curve which uses m1 = m2 = 8·sdλ(A).

All the methods are allowed to conduct N = 60 iterations except the Primal

Dual M-IHS with larger sketch size is allowed to conduct only 20 iterations. The

number of inner iterations are restricted by M = 25 for all the primal dual

schemes. Lastly, a fixed forcing term εsub = 0.1 is used in the AAb Solver for
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Figure 3.5: Performance comparison on a regularized LS problem (n � d) with di-
mensions (n, d,m, sdλ(A)) = (216, 4000, 4000, 443). According to the Corollary 3.2.2.1,

M-IHS is expected to satisfy:
∥∥xN − x0

∥∥
2
≤ ‖x0‖2

√
κ(ATA + λId)

(√
443/4000

)N
=

6 ·10−9 which is almost exactly the case. The Inexact M-IHS requires significantly fewer
operations to reach the same accuracy as others. For example to obtain an (η = 10−4)-
optimal solution approximation, the Inexact M-IHS requires approximately 10 times less
operations than any techniques that need factorization or inversion of the sketched ma-
trix.
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Figure 3.6: Performance comparison on a regularized LS problem (n � d) with di-
mensions (n, d,m, sdλ(A)) = (4000, 216, 4000, 462). The comments in Figure 3.5 are
also valid for this case. The Inexact scheme for Dual M-IHS is capable of significantly
reducing the complexity.
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Figure 3.7: Performance comparison on a regularized LS problems with square-like
dimensions. The problem dimensions are set to max(n, d) = 5 ·104 and min(n, d) = 104

with a noise level of 10%. The results verifies two hypotheses: first the sketch size for
the M-IHS variants can be chosen proportional to the statistical dimension even if it
becomes smaller than the size of the coefficient matrix. Second, the coefficient matrix
can be sketched from both sides to reduce computational complexity.

all the inexact schemes. Applying a second dimension reduction may not seem

to create significant computational saving, but this approach produces smaller

sub-problems than the M-IHS and the Dual M-IHS techniques therefore enables

estimation of parameters such as λ with far fewer number of operations. Lastly,

the Primal Dual M-IHS variants have a noticeably higher rate of convergence

than the A-IPDS algorithm which is based on the CG technique.

3.4.5 Scalability to larger size problems

In this section, as the size of the coefficient matrix and the sketch size increase

we show that the saving gained by the inexact schemes become critically more

important. For this purpose, the algorithms were run on the over-determined

problems with size 5 · 104 × γ · 500 where γ ∈ {1, 2, 4, 8, 16}. The sketch

size was chosen as m = d = γ · 500 and the regularization parameter was set

to 0.1453 for all the experiments so that sdλ(A) = d/10 remains the same for

all the experiments. The data was generated by using the setup described in
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Figure 3.8: Complexity of the algorithms in terms of operation count and computation
time on a set of 5 · 104× 500 · γ dimensional over-determined problems with m = d and
sdλ(A) = d/10.

Section 3.4.1. Note that the convergence properties of the proposed techniques

depend only on the statistical dimension but not directly to the decay rate of the

singular values. To show this, for these experiments, we used heat singular value

profile that has significantly lower decay rate than the philips profile used earlier.

The experiments were realized on a desktop with 4Ghz i7-4790K CPU processor

and 32Gb RAM. The flop count and wall clock time of the algorithms to reach

to an (η = 10−4)-optimal solution approximation are shown in Figure 3.8. As d

and m reach thousands, the number of operations required by the exact schemes

(Blendenpik and M-IHS) becomes larger than 100 times of the operation count

required by the inexact scheme. Moreover, the exact schemes need 25 time longer

time than the inexact scheme to reach the desired accuracy. Additionally, the

operation counts and elapsed time in each stage of the algorithms can be seen in

Figure 3.9 which shows that even the cost of the decomposition applied on the

sketched matrices reaches to prohibitive levels for large scale problems. Hence

the use of solvers such as M-IHS variants that allow inexact schemes is the only

practical choice in these regimes. In these experiments, for the estimation of

the statistical dimension, we set T = 2 and εtr = 0.5. The additional cost of

the sdλ(A) estimation for the proposed M-IHS variants becomes negligibly small

when R-factor is utilized; for the inexact schemes, still it has a low cost, around

the cost of one M-IHS-inexact iteration, that does not cause an issue unlike a

matrix decomposition.
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Figure 3.9: Complexity of the each stage in terms of operation count and computation
time on a set of 5 · 104× 500 · γ dimensional over-determined problems with m = d and
sdλ(A) = d/10. All methods contain SA generation stage. The Blendenpik and M-IHS-
exact contain also QR decomposition stage but M-IHS-inexact does not. The M-IHS-exact
estimates sdλ(A) by using the R-factor while the M-IHS-inexact uses directly SA matrix
and the AAb Solver as proposed in Algorithm 11. The results show that the matrix
decompositions are the main computational bottleneck for the exact schemes in large
scale problems where the advantage of the inexact schemes becomes more significant.

Remark 4. Benchmarking of the exact and inexact schemes by using wall clock

time in MATLAB is not a fair comparison because for-loops in the interpreted

languages such as MATLAB is well known to be much slower than the loops in

compiled languages such as C. Most of the decompositions in MATLAB have C-

based implementation with professional use of BLAS operations, while the inexact

schemes are based on a for-loop. Therefore, we prefer to rely on the operation

counts. However, to give an opinion, in spite of the disadvantages we demonstrate

timing as well.

3.4.6 Effect of the statistical dimension on the perfor-

mance of the inexact schemes

The inexact schemes become more efficient as the statistical dimension de-

creases since the sub-problems are solved in less iterations. To show the ef-

fect of varying statistical dimension on the complexity of the algorithms, we

used over-determined problems with size 5 · 104 × 16 · 103 and varied the
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Figure 3.10: Complexity of the algorithms in terms of operation count and computation
time on a 5 · 104 × 4 · 103 dimensional problem for different ρ = sdλ(A)/d ratios.
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Figure 3.11: Complexity of each stage in terms of operation count and computation
time on a 5 ·104×4 ·103 dimensional problem for different ρ = sdλ(A)/d ratios. Stages
of each algorithm is given in Figure 3.9.

regularization parameter to obtain different ρ = sdλ(A)/d ratios where ρ ∈
{0.5%, 1%, 2%, 5%, 10%, 20%, 50%}. The sketch size was chosen as m = d

and heat profile was used. As in Section 3.4.5, the flop count and wall clock

time of the algorithms to reach to an (η = 10−4)-optimal solution approximation

for the problems with different statistical dimensions are shown in Figure 3.10.

Complexity of the exact schemes increases by the increasing statistical dimension

since convergence rate sdλ(A)/m decreases as m remains constant. Complexity

of the inexact scheme increase faster since sub-problems require more iterations

as the effective range space gets larger. The effect of the increasing statistical

dimension over the different stages of the algorithms are shown in Figure 3.11.
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For the estimation of sdλ(A), same parameters T = 2 and εtr = 0.5 were used as

early. Even for the large ρ ratios, utilizing a sub-solver is still more effective than

computing a matrix decomposition.

3.5 Contributions and Conclusion

In this chapter, we proposed a group of RP-based iterative solvers for large scale

LS problems. As shown by detailed analyses of their convergence behaviour, the

proposed M-IHS variants can be used for any dimension regimes with significant

computational savings if the statistical dimension of the problem is sufficiently

smaller than at least one dimension of the coefficient matrix. Our guarantees,

presented in Theorem 3.2.1 and Corollary 3.2.1.1, are based on the solution ap-

proximation metric given in eq. (2.14) as opposed to the results obtained for

cost approximation metric given in eq. (2.13). In Lemma 3.2.2, we improved the

known lower bounds on the sketch size of various randomized distribution for

obtaining a pre-determined convergence rate with a constant probability. These

guarantees can be readily extended to any other sketching types by using the

AMM property defined in [69]. When tighter bounds for the AMM property

will be available in the future, the bounds derived in this work can be automati-

cally improved as well. Although our bounds for the dense sketch matrices such

as Subgaussian or Randomized Orthonormal Systems (ROS) are the same as in

[36], we gained slightly better results for the sparse sketch matrices. Additionally,

we provide some empirical bounds for the sketch size and the rate of convergence

in Corollary 3.2.2.1 which is remarkably tight as demonstrated through numerical

experiments.

In Algorithm 7, we extend the idea of LSQR into the linear problems in the

form of ATAx = b which we need to solve during the iterations of all proposed

Inexact M-IHS variants and of the Newton Sketch [25]. Similar to the stability

advantage of the LSQR over the CGLS technique [49], the proposed sub-solver

solves the system in the above form without squaring the condition number as

opposed to the techniques such as the symmetric CG and the symmetric Lanczos

59



procedures.

The main advantage of the proposed M-IHS variants over the state of the art

randomized preconditioning techniques such as the Blendenpik, A-IHS and LSRN

is their ability to use inexact schemes that avoids matrix decompositions or inver-

sions. As demonstrated in a wide range of numerical experiments, computational

saving provided by the proposed solver becomes decidedly significant in large scale

problems. Lastly, the proposed M-IHS variants avoid using any inner products

in their iterations and they are shown to be faster than CS-based randomized

preconditioning algorithms. Therefore the proposed M-IHS variants are strong

candidates to be the techniques of choice in parallel or distributed architectures.
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Chapter 4

Proposed Hybrid M-IHS

Techniques

In this chapter, after examining the relation between the regularization of the

full problem given in eq. (2.3) and the projected problem given in eq. (2.10), the

computational bottlenecks in the conventional hybrid methods are discussed in

Section 4.1. Then to remedy these bottlenecks, the Hybrid-M-IHS techniques

are proposed in Section 4.2. In Section 4.3, the proposed M-IHS techniques are

compared with the conventional hybrid methods and the direct methods on sev-

eral realistic problems such as image de-blurring and tomography at various SNR

levels. The chapter is ended in Section 4.4 by stating the contributions and

conclusion remarks.

4.1 Computational Bottlenecks in the Conven-

tional Hybrid Methods

In Krylov Subspace methods such as the LSQR, solution to the full problem

at the k-th iteration is obtained by the transformation xk(λ) = Qky
k(λ) where

Qk is constructed along with the GKL procedure and its columns constitute an
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orthonormal basis for the k-th order Krylov Subspace [10]. As a result, we have

the following equality

∥∥b−Axk(λ)
∥∥
2

=
∥∥β1e1 −Bky

k(λ)
∥∥
2
, (4.1)

between the two problems in eq. (2.3) and eq. (2.10) which suggests that the

numerators of the full GCV function in eq. (2.8) and the projected version in

eq. (2.11) are exactly the same. Hence, the difference between the two estimators

the Gfull and the Gproj is because of the differences in their respective denom-

inators, i.e., different degrees of freedom estimated for the same residual error.

To understand the cause of this difference, consider the spectrum of Bk and A.

For some (k1, k2) integer pair such that k1 ≤ k ≤ k2 ≤ r, the first k1 singular

values of Bk are known to be very good approximations to the first k1 singular

values of A, but the rest of the singular values of Bk approximates the singular

value spectrum between σk1 and σk2 of A [7, 87]. Assume k∗ ≤ k1 so that the

inaccurate small singular values in Bk do not affect the filtering coefficients φi’s

that are close to 1 and consequently sdλ(A) ≈ sdλ(Bk), which is equivalent to

assuming φi ≈ 0 for i ≥ k as in [40]. Even for such cases, the denominator of

Gproj:

tr (Ik+1 − PBk
(λ)) = k + 1− sdλ(Bk) ≈ k + 1− sdλ(A),

is much smaller than the actual degrees of freedom which is accurately estimated

by the denominator of Gfull function as n − sdλ(A). This error in Gproj can be

reduced by using the following modification as demonstrated in fig. 4.1.

Gmodified(λ) =

∥∥β1e1 −Bky
k(λ)

∥∥
2

n− tr (PBk
(λ))

. (4.2)

Remark 5. The minimizer of Gmodified in eq. (4.2) is equal to the minimizer of

the W-GCV in eq. (2.12) for ωk = 1+k
n

which is proposed in [40]. This equivalence

can be seen by taking the derivative of both functions in eq. (4.2) and eq. (2.12)

with respect to λ. Roots of the resulting polynomials are the same, hence equating

them to zero produce the same solutions.
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Figure 4.1: The main difference between the projected and the naive GCV functions:

the lengths of the horizontal lines with double arrows are equal to the denominator of the

GCV functions applied on the projected problems with different sizes. Here, λ is set to

λgcv for all cases so that the numerators of the respective GCV functions are the same.

As demonstrated by the length of the respective horizontal lines, the degrees of freedom

in the residual error are erroneously determined by all of the projected estimators. The

correct value, n − sd(A), can be obtained by the proposed correction if the projected

problem with size k3 is used, since sdλ(Bk3) ≈ sdλ(A) as seen on the overlapped vertical

lines with ◦ and + shaped markers.

The above analysis suggest that the regularization parameter of the full prob-

lem can be estimated from the projected problems that is obtained in the itera-

tions of the GKL procedure by using the estimator Gmodified given in eq. (4.2) as

long as the size of the bidiagonal matrix and therefore the number of the iteration

of the hybrid method is sufficiently larger than the effective rank of the problem

as demonstrated in Figure 4.1. If the number of iterations k is not sufficiently

large to satisfy the condition k1 ≥ k∗, then the regularization parameter esti-

mated from the projected problem might not serve as a proper estimate for the

full problem. In [10, 47, 51], the GCV is proposed to be used for determining

the number of iterations as well, but as shown in Section 3.4, the GCV criterion

frequently terminates the iterations much earlier than the effective rank k∗, which

results in excessive overestimation of the regularization parameter and excessively

smoothed reconstructions of the solution.

When a proper regularization parameter for the full problem is sought, the

computational complexity of the conventional hybrid methods become O(ndk∗+
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(n+ d+ k∗)(k∗)2) where the first term is due to the matrix-vector multiplication

with coefficient matrix A during the GKL process, the second and the third

term are due to the re-orthogonalization steps [40, 46, 50] and the last term

is due to the change of basis. The first term of the complexity expression is

the source of a significant challenge in the distributed memory environments

where even a few hundreds of distributed matrix-vector computations will not

be tolerable due to significant increase in the overall computation time. In such

applications, re-orthogonalization is another bottleneck since each memory node

in the network stores only a certain partition of the left and the right factors

constructed in the bidiagonal decomposition. For instance in highly over or under-

determined problems, if full re-orthogonalization with classical Gram-Schmidt

procedure is used, then each iteration of the conventional hybrid methods requires

at least three distributed matrix-vector computations given that the memory

space of the master/central node is O(min(n, d)2). In decentralized networks

or square-like regimes where n and d scale similar, analyses of the algorithms

become too complicated for discussing here due to the limited space. The GCV

given in eq. (2.11) or eq. (4.2) can be minimized by utilizing the bidiagonal

structure of Bk matrix with less than O((k∗)2) operations so its complexity is

omitted. If it is minimized by using the SVD, then an additional cost of O((k∗)4)

arises (see implementations in [11, 47, 51]). Even if the SVD is not computed in

every iteration, it is needed more than one times to detect a viable regularization

parameter but we have not encountered with any strategy in the literature to

keep the number of times that the SVD is computed as fewer as possible.

4.2 Derivation and Analyses of the Proposed

Hybrid M-IHS Techniques

To reduce the number of multiplications with the coefficient matrix and hence

the overall time complexity, here we propose a group of RP-based hybrid schemes

that obtain reliable estimates for the regularization parameter from the lower di-

mensional sub-problems that arise during the iterations of the M-IHS variants [37].
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In the following sections, detailed derivations of the proposed hybrid techniques

for each M-IHS variant are presented. For the sake of simplicity, we will use the

SVD only in the analyses, but in Appendix C, we provide the GKL procedure-

based algorithms that need only level-1 and level-2 BLAS operations [88]. Also,

in the numerical results presented in Section 3.4, GKL procedure-based versions

of the proposed techniques are used.

4.2.1 Hybrid M-IHS for highly over-determined problems

The proposed Hybrid M-IHS uses the following update at the ith iteration:

(
(SA)T (SA) + λiId

)
∆xi(λi) = AT (b−Axi)− λixi (4.3)

xi+1 = xi + αi∆xi(λi) + βi(x
i − xi−1),

where λi is the regularization parameter and ∆xi(λi) denotes the HS step that

will be taken to compute the (i+1)th iterate. The difference from the naive M-IHS

solver proposed in [37] is due to variable λi, αi and βi parameters. If the regular-

ization parameter λ were known, the naive M-IHS would approximate the Hessian

matrix in the Newton method to gain considerable saving in the computation and

estimate the fixed momentum parameters that maximize the rate of convergence.

In the absence of such prior information on λ, we aim to obtain an estimate of the

regularization parameter λi that will be used in the update eq. (4.3) and to ad-

just the momentum parameters accordingly. For this purpose, x(λ) in the GCV

function given in eq. (2.8) can be replaced with xi + ∆xi(λ) as proposed in [89].

However in this case, for each λ used in the numerical minimization of the GCV

function, it is required to access to the full coefficient matrix, which becomes in-

feasible for large scale problems in the distributed computational environments.

To avoid this computational bottleneck, we will use the GCV formulation given

in eq. (2.9) and utilize only the residual error projected on the range space of

A for the parameter estimation. Consider the following identity due to the first
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order optimality condition of the problem given in eq. (2.3):

λA‡x(λ) = UT (b−Ax(λ)), (4.4)

where the right hand side (RHS) is the numerator of the risk function in eq. (2.9)

when k is set to d, and A‡ denotes the Moore-Penrose inverse (AT )†. Equa-

tion (4.4) means that the residual error projected onto the range space of A can

be computed by using the regularized solution itself but still A is needed. To

reduce the complexity of the inversion and the number of access to the full data, if

the pseudo-inverse of AT in eq. (4.4) is replaced by the pseudo inverse of (SA)T ,

then the following biased estimate is obtained

λ
∥∥Σ−1s VT

s x(λ)
∥∥
2

=
∥∥∥(SA)‡AT (b−Ax(λ))

∥∥∥
2

=
∥∥Σ−11 VT

1 UT (b−Ax(λ))
∥∥
2
,

(4.5)

where UsΣsV
T
s and U1Σ1V

T
1 denote the SVD of SA ∈ Rm×d and SU matrices,

respectively. The bias of the estimate in eq. (4.5) is given by (Lemma 1 of [90]):

ES

[∥∥∥(SA)‡AT (b−Ax(λ))
∥∥∥
2

]
= θ

∥∥UT (b−Ax(λ))
∥∥
2
,

where θ is a positive real number that does not dependent on λ, hence the ap-

proximated residual in eq. (4.5) maintains the same behaviour as the projected

residual
∥∥UT (b−Ax(λ))

∥∥
2

for varying λ values in the expectation. As for a sin-

gle realization of the sketching matrix S, the approximated residual in eq. (4.5) is

still expected to behave similar to
∥∥UT (b−Ax(λ))

∥∥
2

for the varying λ because

the multiplication with Σ−11 VT
1 corresponds to a random scaling of the residual

vector in random directions. If the scaling was on directions of the left singu-

lar vectors of A, i.e., if the random rotation VT
1 in eq. (4.5) was not present,

then the multiplication with Σ−11 would substantially distort the parameter se-

lection mechanism explained in Section 2.2.2 since the energy of the spectral

terms would be significantly altered by Σ−11 . Such deformations are prevented in

eq. (4.5) since, by pre-multiplication with VT
1 , the impact of scaling is dispersed

over the spectral terms and becomes negligible. To show the effect of the random

scaling and the rotation, we conducted the following numerical experiment: we

generated a seismic travel-time tomography problem via IRtool [11]. The image
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size was set to 16 × 16, number of sources and receivers were set to 64, which

gives an over-determined coefficient matrix A ∈ R4096×256. The noise level was

set to
‖w‖2
‖Ax0‖2

= 5%. Then, 1000 samples of Gaussian sketches Si ∈ R768×4096 were

created and the SVD SiU = UiΣiV
T
i was computed for each sample. The corre-

sponding GCV curves, i.e.,
‖Σ−1

i VT
i UT (b−Ax(λ))‖2

2

tr(Id−PΣ(λ))2
and Gfull(λ, d) =

‖UT (b−Ax(λ))‖2
2

tr(Id−PΣ(λ))2

were normalized to the interval [0, 1]. As shown in Figure 4.2, the GCV curves

of a total of 1000 approximations and the Gfull(λ, d) are almost identical. The

subplot under the main plot shows the histogram of the minimizer of the approxi-

mated GCV functions which are densely concentrated around the λgcvd value. The

insert in Figure 4.2 shows the histogram of the relative oracle error of x(λi) where

λi is the minimizer of the approximated GCV function that is constructed by Si.

The small difference between λi’s and λgcvd does not cause a significant deviation

in x(λi), moreover 600 minimizers out of 1000 approximated GCV functions pro-

duce even better results than the one produced by the λgcvd . The error produced

by approximately 200 of the remaining minimizers are only larger than the error

produced by λgcvd at the third decimal of the logarithmic base. The overall graph

shows that the random scaling and the rotation stemming from the multiplication

by Σ−11 VT
1 do not have a significant impact on the parameter selection mecha-

nism, therefore it can be neglected. The caveat here is that although the sketch

size m can be chosen proportional to sdλ(A) for the naive M-IHS technique, the

entries of the diagonal matrix Σ−11 can be kept in the interval [1/(1+ε), 1/(1−ε)]
for a plausible ε ∈ (0, 1) value with high probability as long as the sketch size m

for the Hybrid M-IHS is chosen larger than d [53, 69].

To find a proper regularization parameter for the HS step at the ith iteration,

we substitute xi+∆xi(λ) for x(λ) in eq. (4.5), in that way we avoid access to data

pair A,b for the estimation purpose. Moreover, we use the singular values Σs

of the sketched matrix for the trace term tr (PΣ(λ)) in the denominator. Unlike

the singular values of the bidiagonal form Bk, the singular values of the sketched

matrix SA are accurate estimates for the singular values of A. The regularization

parameter λi for the ith update in eq. (4.3) is chosen as the minimizer of the
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Figure 4.2: The impact of the random scaling and the rotation on the parameter se-

lection.

following risk function:

V1(λ) =
λ
∥∥Σ−1s VT

s (xi + ∆xi(λ))
∥∥
2

d− tr (PΣs(λ))
, (4.6)

which can also be derived by using a linear system interpretation as follows. The

un-regularized version of the linear system in eq. (4.3), i.e., the linear system that

we aim to regularize, is

(SA)T (SA)∆xi = AT (b−Axi) := gi. (4.7)

As opposed to the projected problem obtained by the conventional hybrid meth-

ods, the GCV (or any other predictive risk based estimator) cannot be directly

applied to the linear system in eq. (4.7) because of multiplication with AT that

scales the spectral terms by its singular values. To alleviate the effect of scaling

with the singular values of AT on the RHS of eq. (4.7) and to obtain a reli-

able estimate of the residual error at an affordable complexity, instead of the

pseudo-inverse of AT , the pseudo inverse of (SA)T can be used as:

SA∆xi = (SA)‡AT (b−Axi) = U1Σ
−1
1 VT

1 UT (b−Axi), (4.8)
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which is equivalent to

ΣsV
T
s ∆xi = Σ−1s VT

s gi. (4.9)

If the effect of multiplication with Σ−11 VT
1 on the residual vector is neglected as

discussed earlier, then we get a linear transformation between the measurements

(or the residual) and the current HS step ∆xi. Thus, we can apply the GCV on

the system given in eq. (4.9) as

V1(λ) =

∥∥Σ−1s VT
s gi −ΣsV

T
s ∆xi(λ)

∥∥
2

d− tr (PΣs(λ))
, (4.10)

where ∆xi(λ) is the regularized solution of the linear system given in eq. (4.7):

∆xi(λ) =
(
(SA)T (SA) + λId

)−1 (
AT (b−Axi)− λxi

)
.

Note that, the risk functions given in eq. (4.6) and eq. (4.10) are equivalent to

each other and both are used for the derivation purposes only. In Algorithm 8, we

give an efficient form that requires fewer operations than those given in eq. (4.6)

and eq. (4.10).

After obtaining a proper estimate for the λi by minimizing the risk function

V1(λ), the momentum parameters αi and βi can be selected as

βi = sdλi(Σs)/m, αi = (1− βi)2, (4.11)

which empirically maximize the convergence rate of the ith iteration to the solu-

tion x(λi) (Corollary 3.4 of [37]). When different regularization and momentum

parameters are used for each iteration, the convergence of the Hybrid M-IHS up-

dates given in eq. (4.3) to the solution is characterized by the following theorem.

Theorem 4.2.1. Let x(Φ) is the regularized solution with filtering coefficients

Φ = diag(φ1, . . . , φr) as defined in eq. (2.4). Assume Ti is an update rule de-

pending on the filtering coefficients Φi and the momentum parameters αi, βi such

that ∥∥Ti(xi)− x(Φi)
∥∥
2
≤ ρi

∥∥xi − x(Φi)
∥∥
2
, (4.12)
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where xi+1 = Ti(xi) = Ti(Ti−1(. . . T0(x0))). Then, the following error bound holds:

∥∥xi+1 − x(Φi)
∥∥
2
≤

(
i∏

j=0

ρj

)∥∥x0 − x(Φ0)
∥∥
2

+
i∑

j=1

(
i∏
`=j

ρ`

)
‖x(Φj)− x(Φj−1)‖2 .

Proof. The result of the theorem is obtained by using the condition in eq. (4.12)

and application of the triangle inequality as:

∥∥xi+1 − x(Φi)
∥∥
2
≤ ρi

∥∥xi − x(Φi)
∥∥
2

= ρi
∥∥xi − x(Φi−1) + x(Φi−1)− x(Φi)

∥∥
2

≤ ρi
∥∥xi − x(Φi−1)

∥∥
2

+ ρi ‖x(Φi−1)− x(Φi)‖2
≤ ρiρi−1

∥∥xi−1 − x(Φi−1)
∥∥
2

+ ρi ‖x(Φi−1)− x(Φi)‖2
≤ ρiρi−1

∥∥xi−1 − x(Φi−2)
∥∥
2

+ ρiρi−1 ‖x(Φi−2)− x(Φi−1)‖2
+ ρi ‖x(Φi−1)− x(Φi)‖2 .

Successively, repeating this process for i times produces the desired result.

If the update rule proposed in eq. (4.3) is used, then the assumption in

eq. (4.12) is satisfied by Theorem 3.1 of [37] with a ρi < 1. The convergence

rate ρi is empirically modeled by the ratio sdλi(A)/m [37]. For simplicity assume

that the parameter sequence {λj}ij=1 that is selected through the proposed risk

function satisfies λ0 ≥ . . . ≥ λi, and the initial estimate x0 is chosen to be zero,

then the error upper bound in Theorem 4.2.1 reduces to

∥∥xi+1 − x(λi)
∥∥
2
≤

i∑
j=0

(ρi)
i+1−j ‖x(λj)− x(λj−1)‖2 , (4.13)

where x(λ−1) = 0 and ρi ≥ ρj for λi ≤ λj. Each term in the summation eq. (4.13)

corresponds to the norm of the filtered spectral terms that differ from iteration to

iteration and the value of the summation can be reduced arbitrarily by using the

same λi for a few additional iterations. This upper bound means that recovery of

the true input components Vk′V
T
k′x0 for some 1 ≤ k′ ≤ r continue during the iter-

ations that the regularization parameters do not filter the corresponding singular

vectors. Hence, as long as the regularization parameters used in eq. (4.3) are

greater than the λgcv, each iteration of the Hybrid M-IHS increases the accuracy
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of some parts in the solution estimate. This working dynamic becomes clearer

when the tail of the Tikhonov coefficients is ignored and a hard-thresholding

scheme that is similar to the TSVD is used in the regularization. In such cases,

the error bound in eq. (4.13) reduces to

∥∥xi+1 − x(ki)
∥∥
2
≤

i∑
j=0

(√
ki
m

)i+1−j

‖x(kj)− x(kj−1)‖2 , (4.14)

where k−1 = 0 ≤ k1 ≤ . . . ≤ ki and the truncation parameter kj with momentum

parameters βj =
kj
m

and αj = (1−βj)2 are used in the jth iteration. An algorithm

that realizes the above bound is proposed in Appendix B, but it is not efficient

enough for practical use.

Algorithm 8 Hybrid M-IHS (for n� d)

1: Input: A ∈ Rn×d, b, m, x0 complexity

2: SA = RP fun(A, m) C(n, d,m)

3: [Σs,Vs] = svd(SA) O(md2)

4: while until stopping criteria do

5: gi = VT
s AT

(
b−Axi

)
O(nd)

6: f i = Σ−1s gi + ΣsV
T
s xi O(d2)

7: λi = argmin
λ

∥∥∥(Σ2
s + λI)

−1
f i
∥∥∥
2

/
tr ((Σ2

s + λI)−1) O(d)

8: ∆xi = Vs (Σ2
s + λiI)

−1 (
gi − λiVT

s xi
)

O(d2)

9: k̂ = d− λitr
(

(Σ2
s + λiI)

−1
)

O(d)

10: βi = k̂/m

11: αi = (1− βi)2

12: xi+1 = xi + αi∆xi + βi(x
i − xi−1) O(d)

13: end while

For dense coefficient matrices, the overall computational complexity of Algo-

rithm 8 is O(nd log(m) + Nnd + md2) where N is the number of iterations, m

is the sketch size that is proportional to d and the ROS sketch matrices are as-

sumed to be used (for other choices see [55, 37]). The O(md2) term, which is

due to the SVD, cannot be avoided but the required computation in practice can

be significantly reduced by using the GKL procedure as given in Algorithm 12.

The main computational advantage of the Hybrid M-IHS over the conventional
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techniques is the saving in the number of gradient computations N that is almost

independent of the spectral properties as opposed to the effective rank k∗. In dis-

tributed memory environments, the Hybrid M-IHS requires only one distributed

multiplication per iteration due to the gradient computation and it computes the

decomposition (SVD or GKL) of an m× d dimensional sketched matrix SA only

once prior to the start of iterations in a single node of the memory network. Thus,

parallel implementation of the preferred decomposition that, for example, run on

the GPUs [91] can be readily adapted into the algorithm. The memory space

required by Algorithm 8 scales as O(d2). If A is a sparse matrix, then significant

savings can be gained by careful implementation. For sparse cases, complexity

of the gradient computation O(Nnd) reduces to O(Nnnz(A)). For such cases

data oblivious sparse sketching matrices such as CountSketch with run-time of

O(nnz(A)) can be preferred and the complexity of the bidiagonalization proce-

dure together with the re-orthogonalization steps becomes O(d3 + nnz(A)d), so

the overall complexity is reduced down to O((N + d)nnz(A) + d3). If A is an

operator, without any modification the Hybrid M-IHS can still be used.

4.2.2 Hybrid Dual M-IHS for highly under-determined

problems

If the system in eq. (2.1) is under-determined, instead of the regularized objective

function in eq. (2.3), the naive Dual M-IHS solves the dual problem given in

eq. (3.12) and recovers the solution of the primal problem via the relation in

eq. (3.13). Here, the proposed Hybrid Dual M-IHS uses the following update to

solve the dual problem:

∆νi(λi) = argmin
ν∈Rn

1

2

∥∥SATν
∥∥2
2

+
λ

2
‖ν‖22 + 〈∇g(νi, λi), ν〉 (4.15)

νi+1 = νi + αi∆νi(λi) + βi(ν
i − νi−1). (4.16)

The difference from the naive Dual M-IHS technique is due to the varying regular-

ization and momentum parameters. For the naive Dual M-IHS, the regularization

parameter should be known prior to the iterations but here we obtain a proper
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estimate of the regularization parameter for the updates given in eq. (4.15) and

adjust the momentum parameters accordingly as in the case of Hybrid M-IHS.

For this purpose, we will use the fact that the dual solution scaled with the reg-

ularization parameter corresponds the residual error of the primal problem, i.e.,

λν(λ) = b−Ax(λ), which enables us to write the GCV risk function given in

eq. (2.8) as

Gfull(λ) =
λ ‖ν(λ)‖2

tr (In − PΣ(λ))
. (4.17)

To find a proper regularization parameter for the dual HS step at the ith iteration

given in eq. (4.15), we substitute νi + ∆νi(λ) for ν(λ) in eq. (4.17) and similar

to over-determined case, we use the singular values of the sketched matrix in the

denominator to estimate the degrees of freedom. Consequently, the regularization

parameter λi is chosen as the minimizer of the following risk function

V2(λ) =
λ ‖νi + ∆νi(λ)‖2
tr (In − PΣs(λ))

, (4.18)

which can be also derived from a different perspective by using a linear system

interpretation. The un-regularized linear system in eq. (4.15), i.e., the linear

system that we aim to regularize, is

(SAT )T (SAT )∆νi = b−AATνi := hi. (4.19)

The RHS of eq. (4.19) is equal to the residual error of the primal problem, i.e.,

hi = b−Axi. As opposed to the Hybrid M-IHS, we have a linear transformation

between the measurements and the dual HS step without requiring a matrix

inversion. Therefore, the GCV can be applied directly to the linear system in

eq. (4.19) as

V2(λ) =

∥∥hi −VsΣ
2
sV

T
s ∆νi(λ)

∥∥
2

tr (In − PΣs(λ))
, (4.20)

where UsΣsV
T
s denotes the SVD of the sketched matrix AST ∈ Rn×m and ν(λ)

is the regularized solution of the linear system given in eq. (4.19):

∆νi(λ) =
(
(SAT )T (SAT ) + λI

)−1 (
b−AATνi − λνi

)
.
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Both functions in eq. (4.18) and eq. (4.20) are equivalent. In Algorithm 9, we give

an efficient form of the risk function that requires less operations than those given

in eq. (4.18) and eq. (4.20). When the parameter λi is selected by minimizing

V2(λ), the momentum parameters are chosen in the same fashion as given in

eq. (4.11). As in the convergence analysis of the Hybrid M-IHS, convergence

properties of the Hybrid Dual M-IHS can straightforwardly be characterized by

using Theorem 3.1 of [37].

Algorithm 9 Hybrid Dual M-IHS (for n� d)

1: Input : A ∈ Rn×d, b, m complexity

2: SAT = RP fun(AT ,m)

3: [Σs, Vs] = svd(SAT , n) O(mn2)

4: ν0 = x0 = 0

5: while until stopping criteria do

6: h̃i = VT
s

(
b−Axi

)
O(nd)

7: f i = h̃i + Σ2
sV

T
s ν

i O(n2)

8: λi = argmin
λ

∥∥∥(Σ2
s + λI)

−1
f i
∥∥∥
2

/
tr ((Σ2

s + λI)−1) O(n)

9: ∆νi = Vs (Σ2
s + λiId)

−1
(
h̃i − λiVT

s ν
i
)

O(n2)

10: k̂ = d− λitr
(

(Σ2
s + λiI)

−1
)

O(n)

11: βi = k̂/m

12: αi = (1− βi)2

13: νi+1 = νi + αi∆νi + βi(ν
i − νi−1) O(n)

14: xi+1 = ATνi+1 O(nd)

15: end while

For the problems with dense coefficient matrices, the computational complexity

of the Hybrid Dual M-IHS is O(nd log(m)+Nnd+mn2), where m is proportional

to sdλ(A) and the ROS sketching matrices is assumed. The GKL bidiagonaliza-

tion can be used to further reduce the complexity O(mn2) of the SVD as shown

in Algorithm 13. Line 14 of Algorithm 9 can be incorporated into Line 6 so that

only one distributed matrix-vector computation with coefficient matrix A is re-

quired per iteration. The Hybrid Dual M-IHS maintains the same computational

advantages that the M-IHS has over the conventional hybrid methods. In sparse

problems the complexity of Algorithm 9 can be reduced to O((N+n)nnz(A)+n3)
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in the same way as the highly over-determined case. The total memory space used

by Algorithm 9 scales as O(n2).

4.2.3 Hybrid Primal Dual M-IHS for square-like problems

Assume that the effective rank k∗ of the problem is substantially smaller than

both size of the coefficient matrix, i.e., k∗ � n, d, where n > d, n = d or n < d.

From the discussion about Tikhonov and the TSVD regularization, we know that

k∗ ≈ sdλ(A) for a properly chosen regularization parameter λ and as discussed

in Section 2.2.2.1, a proper estimate of λ can be obtained by using Gfull(λ, k)

function given in eq. (2.9) if k is sufficiently larger than k∗. Assume also we have

a rough estimate k′ such that k′ > k∗ so that the sketch size for the Hybrid Dual

M-IHS can be chosen proportional to the statistical dimension, e.g., m1 = 2k′.

However, O(nm2
1) complexity of n ×m1 dimensional matrix decomposition that

is used for the minimization of V2(λ) function might still be computationally

prohibitive since both n and d might be very large and scale similar. In such

cases, the dual of the sub-problem solved in eq. (4.15) corresponds to solving a

highly over-determined linear system consists of the data pair (AST ,∇g(νi, λ))

since k′ � n, d. To see this, consider the following LS problem that is solved for

the dual variable zi(λ) of the dual HS step ∆νi(λ) given in eq. (4.15)

zi(λ) = argmin
z∈Rm1

∥∥ASTz +∇g(νi, λ)
∥∥2
2

+ λ ‖z‖22︸ ︷︷ ︸
h(z,νi,λ)

, (4.21)

where the relation between the two variables is

∆νi(λ) = −
(
∇g(νi, λ) + ASTzi(λ)

)
/λ ⇐⇒ zi(λ) = SAT∆νi(λ). (4.22)

Therefore, the parameter λi and the solution ν(λi) at the ith iteration of the

Hybrid Dual M-IHS can be iteratively obtained by applying another dimension
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reduction on the problem in eq. (4.21) via the Hybrid M-IHS technique as follows

∆zi,j(λi,j) = argmin
z∈Rm1

∥∥WASTz
∥∥2
2

+ λi,j ‖z‖22 + 2〈∇zh(zi,j,νi, λi,j), z〉, (4.23)

zi,j+1 = zi,j + αj∆zi,j(λi,j) + βj(z
i,j − zi,j−1),

where j is the index of the inner iterations conducted at each update with index

i given in eq. (4.15), λi,j is the estimate of λi at the jth inner iteration and

W ∈ Rm2×n is the second sketching matrix. The inexact dual HS step ∆νi can

be computed by substituting zi,M for zi(λ) in eq. (4.22) where M is the number of

inner iterations. In that way, instead of n×m1 dimensional matrix decomposition

with a computational compelxity of O(nm2
1), an m2 × m1 dimensional matrix

decomposition can be used with a significantly lower computational compelxity

of O((k′)3), where m2 is a few times larger than m1 as discussed in Section 4.2.1,

e.g., m2 = 2m1 = 4k′.

The difference of the update given in eq. (4.23) from the naive Primal Dual

M-IHS techniques proposed in [37] is the varying regularization and momentum

parameters. The regularization parameter should be known prior to the itera-

tions of the naive Primal Dual M-IHS techniques, but here we aim to obtain a

proper regularization parameter for the inner most HS step given in eq. (4.23)

and to tune the momentum parameters accordingly. To obtain an estimate for

the regularization parameter, we will combine the biased estimate idea used in

eq. (4.5) with the risk function V2(λ) given in eq. (4.18).

In the Hybrid Primal Dual M-IHS iterations, the dual solution ν(λ) is esti-

mated over two nested loops as νi − ∇g(νi, λ) − AST (zi,j + ∆zi,j(λ)). Hence,

through the same approach as the Hybrid Dual M-IHS, a proper estimate λi,j

for the regularization parameter can be obtained by substituting the solution es-

timate of ν(λ) at the jth inner iteration of the ith outer loop for ν(λ) in the GCV

function given in eq. (4.17) as

V2(λ) =
λ
∥∥νi −∇g(νi, λ)−AST (zi,j + ∆zi,j(λ))

∥∥
2

tr (In − PΣs(λ))
, (4.24)

76



where UsΣsV
T
s is the SVD of AST . This requires to access n×m1 dimensional

AST matrix for each λ value used in the minimization of V2(λ), which is unde-

sirable for large n. Therefore instead of the risk function in eq. (4.24), similar to

the approach used in eq. (4.5) to derive V1(λ), we will use the following biased

estimate of the residual error that is projected onto the range space of AST which

is a close approximation to the dominant k′ dimensional range space of A (see

Proto-Algorithm and its analysis given in [92])

λ
∥∥Σ−1w VT

wSATν(λ)
∥∥
2
=
∥∥Σ−1w VT

wSAT (b−Ax(λ))
∥∥
2
=
∥∥Σ−12 VT

2 UT
s (b−Ax(λ))

∥∥
2

(4.25)

where UwΣwVT
w and U2Σ2V

T
2 are the SVD of WAST and WUs, respectively.

The bias of the estimate is given by

EW

[∥∥∥(WAS)‡SAT (b−Ax(λ))
∥∥∥
2

]
= θ

∥∥UT
s (b−Ax(λ))

∥∥
2
, (4.26)

where θ is a positive real number that does not dependent on λ. There-

fore, the residual in eq. (4.26) maintains the same behaviour as the residual∥∥UT
s (b−Ax(λ))

∥∥
2

for varying λ in the expectation. Multiplying the projected

residual error with Σ−12 VT
2 has the same negligible effect on the parameter se-

lection mechanism as in the case of the Hybrid M-IHS which is demonstrated in

Figure 4.2.

To find a proper λi,j estimate we first substitute outer loop solution estimate

νi + ∆νi(λ) for ν(λ) in eq. (4.25) and then zi,j + ∆zi,j(λ) for SAT∆νi(λ) due

to the relation in eq. (4.22). As for the denominator that estimates the degrees

of freedom in the residual error, we use singular values of WAST which gives the

following risk estimator:

V3(λ) =
λ
∥∥Σ−1w VT

w(SATνi + zi,j + ∆zi,j(λ))
∥∥
2

m1 − tr (PΣw(λ))
. (4.27)

Note that the last a few singular values of Σw = diag(σw,1, . . . , σw,m1) may un-

derestimate the corresponding singular values of A. Since m1 is a few times

larger than k∗, it does not cause an underestimation issue in the estimated de-

grees of freedom unlike the singular values of the bidiagonal matrix discussed in
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Section 4.1. Also, the value m1 takes the places of min(n, d) in the denominator,

because the residual error is projected onto m1 dimensional subspace. The risk

function V3(λ) can be derived by using a linear system interpretation as well.

Consider the following un-regularized version of the linear system in eq. (4.23)

(
(WAST )TWAST

)
∆zi,j = SAT

(
b−Axi − (SAT )Tzi,j

)
:= gi,j, (4.28)

where hi is defined in eq. (4.19). The linear system in eq. (4.28) is in the same form

as the linear system given in eq. (4.7) that is solved for the Hybrid M-IHS. Hence,

similar to case of the Hybrid M-IHS, GCV-like risk functions cannot be directly

applied to this system because multiplication of the RHS with SAT scales the

spectral terms. To alleviate the effect of the scaling and obtain a reliable estimate

for the residual error with an affordable complexity, instead of the pseudo-inverse

of SAT , the pseudo-inverse of (WAST )T can be used as

WAST∆zi,j = (WAST )‡SAT
(
b−Axi − (SAT )Tzi,j

)
= U2Σ

−1
2 VT

2 UT
s

(
b−Axi − (SAT )Tzi,j

)
,

which is equivalent to

ΣwVT
w∆zi,j = Σ−1w VT

wSAT
(
b−Axi − (SAT )Tzi,j

)
= Σ−1w VT

wgi,j. (4.29)

If the effect of the multiplication with Σ−12 VT
2 is neglected in eq. (4.29) as dis-

cussed early, then we get a linear transformation between the measurements (or

the residual) and the innermost HS step ∆zi,j. Hence, we can apply the GCV on

the linear system given in eq. (4.29) as

V3(λ) =

∥∥Σ−1w VT
wgi,j −ΣwVT

w∆zi,j(λ)
∥∥
2

tr (Im1 − PΣw(λ))
, (4.30)

where ∆zi,j(λ) is the regularized solution of the linear system given in eq. (4.28):

∆zi,j(λ) =
(
(WAST )TWAST + λIm1

)−1 (
gi,j − λ(zi,j + SATνi)

)
.
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Algorithm 10 Hybrid Primal Dual M-IHS (for n ≤ d or n ≥ d)

1: Input: A ∈ Rn×d, b, m1, m2 complexity

2: [SAT ] = RP fun(AT , m1) C(n, d,m1)

3: [WAST ] = RP fun(AST , m2) C(n,m1,m2)

4: [Σw,Vw] = svd(WAST , m1) O(m2m
2
1)

5: τ = −∞, i = −1, ν0 = x0 = 0, z0,0 = 0

6: while until first stopping criteria do

7: i = i+ 1

8: hi = b−Axi O(nd)

9: ν̃i = SATνi (or ν̃i = Sxi) O(nm1)

10: zi,0 = zi−1,j+1, j = −1

11: while until second stopping criteria do

12: j = j + 1;

13: gi,j = VT
wSAT (hi −ASTzi,j) O(nm1)

14: z̃i,j = VT
w(zi,j + ν̃i) O(m2

1)

15: f i,j = Σ−1w gi,j + Σwz̃i,j O(m1)

16: λi,j = argmin
λ≥τ

∥∥∥(Σ2
w + λI)

−1
f i
∥∥∥
2

/
tr ((Σ2

w + λI)−1) O(m1)

17: ∆zi,j = Vw (Σ2
w + λi,jI)

−1
(gi,j − λi,j z̃i,j) O(m2

1)

18: k̂ = m1 − λi,jtr
(

(Σ2
w + λi,jI)

−1
)

19: β1,j = k̂/m2

20: α1,j = (1− β1,j)2

21: zi,j+1 = zi,j + α1,j∆zi,j + β1,j(z
i,j − zi,j−1) O(m1)

22: end while

23: ∆νi = (hi − λi,jνi −ASTzi,j+1)/λi,j O(nm1)

24: β2,i = k̂/m1

25: α2,i = (1− β2,i)2

26: νi+1 = νi + α2,i∆νi + β2,i(ν
i − νi−1) O(d)

27: xi+1 = ATνi+1 O(nd)

28: τ = max(λi,j, τ)

29: end while
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Similar to the Hybrid M-IHS, after obtaining λi,j by minimizing V3(λ) func-

tion, the momentum parameters for the inner iterations are set as

βj = sdλi,j(Σw)/m2, αj = (1− βj)2.

After M inner iterations, the inexact dual step ∆νi is obtained by using the

relation in eq. (4.22) and the momentum parameters for the outer loop are set as

βi = sdλi,M (Σw)/m1, αi = (1− βi)2.

The risk functions given in eq. (4.27) and eq. (4.30) are equivalent to each other

and both are used only for the derivation. An efficient form that requires O(m1)

operations to compute V3(λ) for a given λ is given in Algorithm 10.

For the problems with dense coefficient matrices, the computational complex-

ity of the Hybrid Primal Dual M-IHS is O(nd log(m1) +nm1 log(m2) +m2m
2
1 +

Nnd+NMnm1), where m1, m2 are proportional to the prior estimate k′ and the

ROS sketching is used. The GKL bidiagonalization can be used to reduce the re-

quired operations by the SVD as shown in Algorithm 14. Line 27 of Algorithm 10

can be incorporated into Line 8 so that only one distributed matrix-vector mul-

tiplication with the coefficient matrix A is required per iteration. Similar to

the highly over/under-determined cases, the Hybrid Primal Dual M-IHS com-

putes the decomposition of m2 ×m1 dimensional matrix only once prior to the

iterations. In sparse problems, by following the approaches used in the highly

over/under-determined cases, the complexity of Algorithm 10 can be reduced to

O((NM + m1)nnz(A) + m3
1 + NMm2

1). The total memory space required by

Algorithm 10 is bounded by O(nm1 +m2m1).
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4.3 Numerical Experiments and Comparisons

In this section, performance of the Hybrid M-IHS schemes will be compared

with the direct and the deterministic hybrid methods through various numeri-

cal problems generated by using the IR Tool [11]. MATLAB implementation of

the proposed techniques are given in the following link: https://github.com/

ibrahimkurban/Hybrid-M-IHS.

4.3.1 Experiment setups

0 200 400 600 800 1000

-20

-15

-10

-5

0

5

Figure 4.3: The size and the singular value profiles of the coefficient matrices used in
the numerical experiments.

In the comparison, five difficult examples were used. The dimensions and

the singular values of the coefficient matrices used in each example are given

in fig. 4.3. The first two examples were used to test the Hybrid Primal Dual

M-IHS on the square-like dimensional problems, the third and fourth examples

were used to test the Hybrid M-IHS on the highly over-determined cases and

the fifth example was used to test the Hybrid Dual M-IHS on the highly under-

determined regimes. The data used in the first four examples were generated

by using real life applications including image de-blurring, X-ray tomography
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and seismic travel-time tomography problems [11]; the fifth one was randomly

generated. The details of data generation for each example are given below. In

all examples, the additive i.i.d. Gaussian noise was used to model the error/noise

vector w in eq. (2.1) and the techniques were tested at 8 different signal-to-noise

ratio (SNR) in the range of 0.3% to 15%. At each SNR, the experiment was

repeated for 20 different noise realizations and the results were averaged.

As for the error measure, instead of the true input x0, the effective true input

xk∗ = Vk∗V
T
k∗x0, where effective rank k∗ is found by using the TSVD solution

given in eq. (2.5), is used because, as discussed in Section 2.2.2, xk∗ represents the

information about the true input x0 that can be extracted from the measurements.

The effective rank k∗’s of the examples at each SNR are given in Table 4.1.

Table 4.1: The average effective rank k∗’s of the examples at different SNR levels

0.3% 0.6% 1% 4% 8% 10% 12% 15%

Ex 1 293 259 245 195 163 164 162 158
Ex 2 1324 1006 759 417 261 224 188 176
Ex 3 2495 2489 2480 2460 2356 2306 2260 2106
Ex 4 1590 1581 1565 1473 1226 1221 1214 1180
Ex 5 879 832 791 679 603 579 563 527

Example 1 The first example is an image de-blurring problem. The Gaussian

blur was used as the point spread function and the blurring level was set to

highest rate, i.e., severe. A 100 × 100 dimensional image of the Hubble Space

Telescope was used as the input and the default values were used for the rest of

the problem specific parameters.

Example 2 The second example is a Seismic Travel-Time Tomography problem

under the Fresnel wave model. A 100 × 100 dimensional random image with

patterns of nonzero pixels, that is generated by ppower option, was used as the

input and the default values were used for the rest of the parameters.
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Example 3 The third example is an X-Ray Tomography problem with parallel

beam geometry. A 50 × 50 dimensional Shepp-Logan phantom was used as the

input image and the default values were used for the rest of the problem specific

parameters.

Example 4 The fourth example is again a Seismic Travel-Time Tomography

problem, but the waves are modeled as straight lines this time. The number of

measurements was increased to obtain a highly over-determined problem. For

this purpose, the number of sources and the receivers were set to 40 and 240,

respectively. Also, the input image, which is generated by ppower option, was

40× 40 dimensional.

Example 5 The fifth and the last example was synthetically by sampling the

the entries of the coefficient matrix from the distribution N (1d,Γ) where Γij =

6 · 0.9|i−j|, providing highly correlated columns. Then its singular values were

replaced with the philips singular value profile that is provided in RegTool [41].

The singular values were scaled for setting the condition number κ(A) to 108. The

entries of the input signal x0 were drawn uniformly from the interval of [−0.5, 0.5]

so that the coefficient matrix and input are independent from each other.

4.3.2 Compared methods and their implementation de-

tails

The first technique in the comparison set is the Oracle Regularized LS (OR-LS )

solution x(λ∗) with parameter λ∗ = argmin ‖x(λ)− xk∗‖2 . The OR-LS achieves

the minimum error that can be obtained via the Tikhonov regularization, hence it

serves as a theoretical lower bound for the errors produced by the other techniques

in the comparison set. In practice, λ∗ can be replaced by an estimate such as

λgcv or λgcvp which are the minimizers of the risk estimators given in eq. (2.8)

and eq. (2.9), respectively. The resulting two solutions x(λgcv) and x(λgcvp ) are

referred to as GCV-full and GCV-partial in the legends. The projection size
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p in the GCV-partial was set to min(k∗ + 500, n, d). Another technique in the

comparison set is the Hybrid LSQR algorithm with WGCV risk estimator for

which we used the MATLAB codes provided by Chung, et al in [51, 47]. For this

algorithm, we tested two schemes: the first one Hybrid LSQR (GCV-stop) was

obtained by terminating the iterations according to the GCV stopping criterion,

and the second one Hybrid LSQR (300) was obtained by terminating after 300

iterations. In both schemes, the weight was selected through the adaptive weight

selection technique described in [51] and the full re-orthogonalization step was

applied in all iterations. As for the Hybrid M-IHS variants, ROS sketches, in

which columns are sampled without replacement, was used with the Discrete

Cosine Transform. For the first two examples, the pair (m1,m2) = (2k∗, 5k∗),

for the third and fourth examples m = 2d and for the last example m = 2n were

used for the sketch sizes. During the bidiagonalization procedure for the Hybrid

M-IHS variants, we applied re-orthogonalization only on Qk matrix through the

PROPACK package [50] as detailed in the Appendix C. Lastly, validity of the

analysis given in Section 4.1 is demonstrated through the Hybrid-modified scheme

that uses the GCV function given in eq. (4.2) for the Hybrid-LSQR algorithm

with L = min(k∗ + `, n, d) number of iterations for some `, which are given in

Table 4.2.

4.3.3 Obtained results

The error and parameter estimation results obtained in five examples described

above are given in Figure 4.4, 4.5, 4.6, 4.7 and 4.8, respectively.

Average number of iterations that each iterative algorithm required to obtain

the demonstrated results are given in Table 4.2. The results of the GCV-partial

confirms that as long as the residual contains sufficient information about the

noise statistics, i.e., projection dimension is sufficiently larger than k∗, the partial

version of the GCV function given in eq. (2.9) can be used without degrading the

performance of the risk estimator. Projecting the residual onto a smaller subspace

of the range space of A might worsen the estimation because the projection
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Figure 4.4: Error and parameter estimation performances on Example 1 (104 × 104)
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Figure 4.5: Error and parameter estimation performances on Example 2 (2·104× 104)
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Figure 4.6: Error and parameter estimation performances on Example 3 (12780×2500)
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Table 4.2: The number of iterations that the iterative algorithms need to obtain the
results given in Figure 4.4, 4.5, 4.6, 4.7 and 4.8. While the Hybrid M-IHS variants
require only one matrix-vector multiplications with the coefficient matrix per iteration,
the number required by the GKL based hybrid methods significantly varies with respect
to the preferred re-orthogonalization scheme.

Techniques 0.3% 0.6% 1% 4% 8% 10% 12% 15%

e
x
1 Hybrid LSQR 39 27 23 8 4 4 3 38

Hybrid-modified 593 559 545 495 463 464 462 458
Hybrid M-IHS 14 15 14 11 13 12 12 10

e
x
2 Hybrid LSQR 43 33 27 11 7 69 63 57

Hybrid-modified 2260 1879 1676 1386 1266 1256 1227 1994
Hybrid M-IHS 10 10 9 9 10 10 12 10

e
x
3 Hybrid LSQR 38 29 22 9 6 133 124 126

Hybrid-modified 2498 2492 2483 2463 2359 2309 2263 2109
Hybrid M-IHS 18 17 16 13 12 9 10 9

e
x
4 Hybrid LSQR 48 24 22 6 284 280 276 256

Hybrid-modified 1600 1600 1600 1600 1600 1600 1593 1534
Hybrid M-IHS 18 18 17 13 10 8 9 8

e
x
5 Hybrid LSQR 177 109 58 17 10 98 82 70

Hybrid-modified 1179 1132 1091 979 903 879 863 827
Hybrid M-IHS 7 7 7 8 10 10 10 10
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Figure 4.7: Error and parameter estimation performances on Example 4 (64000×1600)
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Figure 4.8: Error and parameter estimation performances on Example 5 (1500×4·104)

discards the residual components that contain useful statistics about the noise,

but still the partial version generates satisfactory results compared to the naive

GCV.

While the GCV variants consistently underestimate the optimal regulariza-

tion parameter, the Hybrid LSQR techniques overestimate the λ∗ value because

the GCV stopping criterion typically terminates the iterations too early. When

the number of iterations for the Hybrid LSQR technique is increased up to 300,

the parameter estimation gets better as demonstrated through the Hybrid GCV

(300) scheme, but still 300 iterations are not enough for most of the cases to

obtain satisfactory results. If the correction given in eq. (4.2) is used with a

number of iterations that sufficiently exceeds the effective rank of the problem,

such as L, then to obtain stable results with the conventional hybrid methods

seems possible as seen on the Hybrid-modified scheme. However, although Hybrid-

modified generates stable results, its time complexity is very high due to number
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(b) Example 2 (n > d)
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(c) Example 3 (n� d)
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(d) Example 4 (n� d)
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(e) Example 5 (n� d)
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iterations

Figure 4.9: Convergence behaviour of the hybrid methods. The GCV stopping criterion
causes the Hybrid LSQR algorithm to terminate too early, but even 300 iterations of
the Hybrid LSQR is not sufficient to obtain an accuracy that is provided by the direct
methods. On the other side, the proposed Hybrid M-HS variants converge quickly. Plot
(f) shows that Hybrid Primal Dual M-IHS inherits the convergence behaviour of the
Hybrid Dual M-IHS in the outer loop, i.e., λi’s starts small and get larger through the
iterations while inherits the convergence behaviour of the Hybrid M-IHS in the inner
loop iterations, i.e., λi,j starts large and get smaller.
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of matrix-vector multiplications with A and the re-orthogonalization steps in the

bidiagonalization procedure.

On the other hand, the proposed Hybrid M-IHS variants are capable of pro-

ducing close estimates to λ∗ in a steady manner in all dimension regimes and at

each SNR. In example 3 and 4, the sparsity ratio of the coefficient matrices are

approximately 1.8% and 2.9% respectively. Thus in Figure 4.6 and Figure 4.7, we

also show the performance of the Hybrid M-IHS technique when the sparse sub-

space embeddings are used as the sketching matrix. The Count sketch contains

only one non-zero element in each column and therefore can be applied to the co-

efficient matrix in O(nnz(A)) operations. In these experiments, the Count sketch

was used with the same sketch size as the ROS matrices, i.e., m = 2d. One of the

main motivation behind the proposed Hybrid M-IHS techniques was to decrease

the number of matrix-vector multiplications with A by reducing the number of

iterations. As shown on the Table 4.2, in all conducted experiments, the total

number of iterations does not exceed a few dozens for the Hybrid M-IHS variants

to achieve comparable accuracies with the direct methods that are applied on

the full data. Conversely, the number of iterations required by the conventional

hybrid methods changes significantly with respect to the spectral properties of

A. In Figure 4.9, at an SNR level of 1%, we demonstrate the convergence be-

haviour of the Hybrid-LSQR and the Hybrid M-IHS techniques by drawing the

error and the parameter estimation progress over all iterations. Note that for

(m1,m2) values, the prior k′ is assumed to be k∗ which is the smallest possible

value. For practical values of k′, the sketch (m1,m2) would be larger, hence the

convergence of the Hybrid Primal Dual M-IHS will be faster.

For a qualitative comparison of the reconstructed solutions that are obtained at

an SNR level of 1%, we demonstrated the true input, the noisy measurements and

the reconstructed signals of the first four examples in Figure 4.10, 4.11, 4.12 and

4.13, respectively. The images reconstructed by using the Hybrid LSQR (GCV)

scheme are highly over-smoothed whereas the proposed Hybrid M-IHS variants

reconstructs images that are almost identical to the results of the OR-LS scheme.

In Table 4.3, for a quantitative comparison, we give the the Peak-SNR (PSNR)

values of the reconstructed images at three different SNR levels. The PSNR
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values are calculated by taking the effective true input image as the reference

image to emphasize the performance of the algorithms on the recoverable parts

of the solutions. In all examples and SNR’s, unlike Hybrid LSQR (GCV), the

reconstructions of the M-IHS variants have PSNR values that are very close to

the ones obtained by the OR-LS scheme.

Table 4.3: PSNR (in dB) values of the reconstructed images measured with respect to
the effective true input xk∗.

ex. no ex. 1 ex. 2 ex. 3 ex. 4

‖w‖/‖Ax0‖ 0.3% 1% 10% 0.3% 1% 10% 0.3% 1% 10% 0.3% 1% 10%

OR-LS 36.00 35.71 31.48 28.46 23.65 22.89 49.20 39.79 24.93 35.92 28.99 22.56
Hybrid M-IHS 35.95 35.6 29.27 28.44 23.60 22.89 47.70 39.49 24.82 36.02 28.92 22.56
Hybrid LSQR 30.57 29.80 24.93 22.58 16.09 19.37 38.40 31.43 24.02 15.95 15.93 22.04

4.4 Contributions and Conclusion

In this chapter, we proposed a group of novel hybrid schemes adapted for the

randomized preconditioning techniques to estimate the regularization parameter

λ for the LS problem given in eq. (2.3) by using the lower dimensional sub-

problems, which are constructed by random projections during the iterations,

without accessing the full data pair except for the gradient computations. The

regularization parameter λ is estimated along with the iterations and the corre-

sponding regularized solution is produced as a result. Since, as the core solver

of the proposed hybrid scheme, we choose to use the M-IHS techniques that offer

several advantageous properties for parallel or distributed memory environments

prevalent in large scale applications [37], the Hybrid M-IHS schemes estimate reg-

ularization parameters from the lower dimensional sub-problems that are solved

for determining the approximate Newton step, that will be referred to as the Hes-

sian Sketching (HS) step. A proxy of the Generalized Cross Validation (GCV)

is used in the estimation of the regularization parameter λ. Although the in-

dividual sub-problems constitute crude approximations for the full LS problem,

the accuracy of their solutions increases exponentially over the iterations [55] and

hence, accuracy of the λ estimates converge rapidly to a proper value for the full
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problem. The number of multiplications with the coefficient matrix, which is the

main complexity issue of the conventional deterministic hybrid methods, is sub-

stantially reduced by the proposed Hybrid M-IHS schemes. We demonstrated the

performance of the Hybrid M-IHS on several realistic problems extracted from IR

tool [11]. In all the conducted experiments, the Hybrid M-IHS techniques con-

sistently produce better error results than the direct methods by accessing the

full data by a significantly fewer number of times than the conventional hybrid

techniques.
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Chapter 5

Conclusions and Future Work

In this thesis, we presented a group solvers for large scale linear LS problems. In

the first part, `2-norm regularization parameter is assumed to be either zero or

a known value. Then, a novel randomized solver M-IHS which is an improvement

of the Iterative Hessian Sketch and the randomized preconditioning is proposed

and its convergence properties are analyzed in detail. For the un-regularized LS

problems, the M-IHS solver is efficient only in highly over-determined problems.

Our asymptotic analysis reveals that its convergence rate is independent of the

spectral properties of the coefficient matrix and is determined by the ratio be-

tween the number of columns in the coefficient matrix and the sketch size which

is controlled by the user. For the regularized LS problems, the idea of the M-IHS

solver is extended to the highly under-determined problems and the Dual M-IHS

solver is obtained. Our non-asymptotic analyses show that in the regularized LS

problems, the sketch size can be chosen proportional to the statistical dimen-

sion for the M-IHS and the Dual M-IHS to converge at an exponential rate with

constant probability, which means that the M-IHS variants can be used for any

regularized LS problems as long as the statistical dimension is sufficiently smaller

than at least one dimension of the coefficient matrix. We also showed that the

exponential rate is empirically determined by the ratio between the statistical di-

mension and the sketch size, which confirms the asymptotic analysis made for the

un-regularized case. In the light of these theoretical findings, we also derived the
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Primal Dual M-IHS that applies two-stage sketching on the coefficient matrix to

gain further computational savings.

The M-IHS variants offer several advantageous properties for modern compu-

tation environments such as parallel or distributed memory systems that are

prevalent in large scale applications. First of all, when sub-solvers are utilized

in the iterations, the M-IHS variants do not require any matrix decomposition

or inversion, unlike well-known randomized preconditioning methods such as the

Blendenpik and the LSRN. Therefore, the M-IHS variants might be the meth-

ods of choice in large scale problems such as the 3D imaging where even the

decomposition of the sketched matrix is not feasible to compute. Secondly, the

M-IHS variants do not require any inner product or norm calculations in the it-

erations, hence avoid synchronization steps in parallel computing, which results

in overwhelming advantages over the CG or the GMRES like iterative solvers in

distributed or hierarchical memory systems. Moreover, the M-IHS variants can be

used for the problems where the coefficient matrix is sparse or an operator that

allows matrix-vector multiplications.

In the second part, the main focus is on the estimation of `2-norm regulariza-

tion parameter. We introduced hybrid schemes for the M-IHS variants to estimate

the regularization parameter along with the iterations. Unlike conventional hy-

brid methods, the proposed hybrid schemes are based on random projections

instead of deterministic projections onto the Krylov Subspaces. In the Hybrid

M-IHS variants, the regularization parameter is estimated from the sub-problems

that arise during the iterations of the M-IHS variants by using a proxy of the

GCV technique. Although individual sub-problems constitute crude approxima-

tions for the full problem, when their solutions are built on the top of each other,

they eventually allow estimation of accurate parameters. Thus, the parameter

sequence estimated from these lower dimensional sub-problems rapidly converge

to a proper regularization parameter for the full problem. In various experiments

conducted over realistic problems such as image de-blurring, X-ray tomography

and seismic travel-time tomography, the Hybrid M-IHS variants consistently es-

timate better regularization parameters at all SNR levels than the conventional

hybrid methods, hence allow less error in the reconstructions. Moreover, to get
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these results, M-IHS variants require significantly fewer number of matrix-vector

multiplications with the coefficient matrix. Therefore, unlike the conventional

hybrid methods, as long as the decomposition of the sketched matrix can be

computed efficiently, the proposed hybrid schemes are not only effective in the

sequential systems, but they can also be successfully adapted into the parallel or

distributed memory environments.

The effect of the inexact sub-solvers on the convergence rate of the M-IHS al-

gorithms can be studied as a future direction. Such analyses would reveal the

target accuracy for the solutions of the sub-systems and the maximum number of

iterations. Similar to the conventional hybrid methods, the Hybrid M-IHS tech-

niques do not have a guarantee for the selected regularization parameters since

the estimation of the parameter is based on the GCV heuristics. Any advance-

ment in certifying the selected parameter would be seminal in the literature of the

hybrid methods. Lastly, all the techniques discussed or proposed in this thesis

require more than one accesses to the coefficient matrix, but for many contempo-

rary applications, even one access to the coefficient matrix is hardly possible. In

such problems, the classical sketching techniques can be investigated to estimate

robust regularization parameters and to construct accurate solutions.
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Appendix A

Discussion on the Proposed Error

Upper Bound for Iterations of

Primal Dual Algorithms in [1]

In this appendix, we provide details of a critical discussion on the steps of the

derivation that leads to an error upper bound for the iterations of the primal dual

algorithms given in [1]. First, we provide a short list of minor issues that can

easily be corrected.

1. During the initialization stage in Line 2 of both Algorithm 4 in page 4097

and Algorithm 5 in page 4098, the residual error vector r(0) must be set to

−λy instead of −y, otherwise iterates of the both of the algorithms diverge

from the optimal solution.

2. During the initialization stage in Line 2 of Algorithm 7 in 4912, the dual

residual error vector r
(0)
Dual must be set to −λy instead of −y and during

the initialization stage of the inner loop iterations in Line 15, the primal

residual error vector r
(0)
P must be set to −RTXT r

(t+1)
D ; otherwise iterates

of the algorithm diverges from the optimal solution. The MATLAB codes

provided in the link includes these corrections.
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In addition to the above mentioned minor issues, there are some major issues

as well. Unfortunately, we could not obtain corrective actions on these major

issues as we could have done on the minor issues mentioned above. Therefore,

a lower bound on the number of inner loop iterations, that guarantee a certain

rate of convergence at the main loop, is still an open question for the primal

dual algorithms. In the remaining of this appendix, we will provide steps of the

derivation presented in [1], along with our critical remarks on their validity.

Consider the following A-IHS updates

ŵt+1 = ŵt + ût.

We are going to use exactly the same notation as [1] except for that HS subscript

for the A-IHS iterates are omitted. In the primal dual algorithms, instead of exact

sequence {ŵt}, a sequence {w̃t} is obtained due to the approximate minimizers

that are used in place of ût. Consequently while the sequence {ŵt} is obtained

after t exact iterations of the A-IHS algorithm, sequence {w̃t} is obtained after t

primal dual iterations in each of which k inner loop updates are used to approx-

imate ût’s. The details of the inner and outer loops can be found in Algorithm 7

of [1]. The aim of the Theorem 9 is to establish an upper bound for

∥∥w̃t+1 −w∗
∥∥

X

where w∗ is the true minimizer of the primal objective function. The triangle

inequality and the convergence rate of the A-IHS that is established in Theorem

2 of [1] is used to find an upper bound for this error norm:

∥∥w̃t+1 −w∗
∥∥

X
≤
∥∥ŵt+1 −w∗

∥∥
X

+
∥∥w̃t+1 − ŵt+1

∥∥
X

(A.1)

≤ αt ‖w‖X +
∥∥w̃t+1 − ŵt+1

∥∥
X
,

where α =
C0

√
W2(XRp∩Sn−1) log(1/δ)

1−C0

√
W2(XRp∩Sn−1) log(1/δ)

. At this point a new iterate, wt+1, is intro-

duced, which is the result of one exact step of the IHS initialized at w̃t. The

inner loop iterations at the t-th outer (main) loop iteration of the primal dual
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iterations are expected to converge wt+1. Therefore,

∥∥w̃t+1 − ŵt+1
∥∥

X
≤
∥∥w̃t+1 −wt+1

∥∥
X

+
∥∥wt+1 − ŵt+1

∥∥
X
,∥∥w̃t+1 −wt+1

∥∥
X
≤ λmax

(
XTX

n

)
βk
∥∥wt+1

∥∥
2

≤ λmax

(
XTX

n

)
βk
(∥∥wt+1 −w∗

∥∥
2

+ ‖w∗‖2
)

≤ 2λmax

(
XTX

n

)
βk ‖w∗‖2 , (A.2)

where β =
C0

√
W2(XTRp∩Sp−1) log(1/δ)

1−C0

√
W2(XRp∩Sp−1) log(1/δ)

. The last inequality is not valid unless

∥∥wt+1 −w∗
∥∥
2
≤ ‖w∗‖2 .

However, particularly during the initial phases of the main iterations this condi-

tion can be violated. Therefore, this step of the proof requires a major revision.

Assuming that such revision is possible, up to this point, the following is obtained:

∥∥w̃t+1 −w∗
∥∥

X
≤ αt ‖w‖X+2λmax

(
XTX

n

)
βk ‖w∗‖2+

∥∥wt+1 − ŵt+1
∥∥

X
. (A.3)

To proceed for the final form of the upper bound, the following upper bound on

the last term of eq. (A.3) is given in [1]:

∥∥wt+1 − ŵt+1
∥∥

X
≤
∥∥∥H̃−1∥∥∥

2

∥∥∥H̃−H
∥∥∥
2

∥∥w̃t − ŵt
∥∥

X
≤

4λmax

(
XTX
n

)
λ

∥∥w̃t − ŵt
∥∥

X
,

which is a valid bound. Then in [1] the following upper bound is given without

necessary justification:

∥∥w̃t − ŵt
∥∥

X
≤ 2λmax

(
XTX

n

)
βk ‖w∗‖2 .

to reach the final form of the error upper bound:

∥∥w̃t+1 −w∗
∥∥

X
≤ αt ‖w∗‖X +

10λ2max

(
XTX
n

)
λ

βk ‖w∗‖2 .
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However, this final form of the upper bound is not supported in detail as part

of the presented proof. Because of the following major issue, we conclude that

the proposed bound remains an unproven conjecture. The bound established for

‖w̃t+1 −wt+1‖X in eq. (A.2) is used to upper bound ‖w̃t − ŵt‖X. This is not

justified as part of the proof in [1].
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Appendix B

TSVD Based Regularization

Scheme

Following theorem provides an example algorithm that inherits the convergence

behaviour given in eq. (4.14):

Theorem B.0.1. Consider the TSVD solution with truncation parameter k:

x(k) = VkΣ
−1
k UT

k b

The modified Hybrid M-IHS updates,

∆xi(ki) = VkiΣ
−1
ki

(
UT
ki

STSUki

)−1 (
UT
ki

b−ΣkiV
T
ki

xi
)

xi+1 = xi + αi∆xi(ki) + βi(x
i − xi−1)

with truncation parameters k0 ≤ . . . ≤ ki = k and momentum parameters

βi = ki/m, αi = (1− βi)2,
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converge to the TSVD solution x(k) at the following rate:

‖xi+1 − x(k)‖2 ≤
i∑

`=0

(
i∏
j=`

√
βj

)
σk`−1+1

σk`
‖x(k`−1 : k`)‖2 ,

where k−1 = 0 and the initial guess x0 = 0.

Proof. Firstly assume that constant truncation parameter k and momentum pa-

rameters β = k/m, α = (1−β)2 are used for all iterations. Consider the following

bipartite transformation[
ΣkVk (xi+1 − x(k))

ΣkVk (xi − x(k))

]
=

[
(1 + β)Ik − α

(
UT
kSTSUk

)−1
βIk

Id 0

]
︸ ︷︷ ︸

T

[
ΣkVk (xi − x(k))

ΣkVk (xi−1 − x(k))

]
.

If the inequality

β ≥
(

1−
√
αψi

)2
, ∀i ∈ [r] (B.1)

holds, then all eigenvalues of the bipartite transformation are imaginary and have

magnitude
√
β, where ψi is the ith eigenvalue of

(
UT
kSTSUk

)−1
. The ψi values

can be stochastically bounded by using the Approximate Matrix Property of the

sketch matrices:

PS∼D
(∥∥UT

kSTSUk − Ik
∥∥
2
≤ ε
)
≤ δ. (B.2)

where the parameters ε and δ can be chosen according to Lemma 3.2.2. We refer

interested reader to Section 3.2 for further discussion about the property and

we move on with the asymptotic bounds for simplicity. Since Uk is an orthogo-

nal transformation, according to the MPL, the largest and smallest eigenvalues of

UT
kSTSUk is asymptotically bounded in the interval [(1−

√
k/m)2, (1+

√
k/m)2]

as m → ∞ while the ratio k/m remains constant [63]. Consequently, the con-

dition in eq. (B.1) can be satisfied for all ψi’s by the following choice of β that

maximizes the convergence rate over step size α

√
β∗ = minimize

α
max

{∣∣∣∣∣1−
√
α

1 +
√
k/m

∣∣∣∣∣ ,
∣∣∣∣∣1−

√
α

1−
√
k/m

∣∣∣∣∣
}

=

√
k

m
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where the minimum is achieved at α∗ = (1 − k
m

)2. As a result, we have the

following inequality:

‖ΣkV
T
k

(
x(k)− xi+1

)
‖2 ≤

√
k

m

∥∥ΣkV
T
k

(
x(k)− xi

)∥∥
2

which satisfies the condition in theorem 4.2.1. If the parameters are changing

through the iterations, then consider the transformed error at the (i+ 1)th itera-

tion:

ΣkiV
T
ki

(xi+1 − x(k)) = ΣkiV
T
ki

(xi − x(k))− αi
(
UT
ki

STSUki

)−1
ΣkiV

T
ki

(xi − x(k))

+ βiΣkiV
T
ki

(xi − xi−1)

(i)
= ΣkiV

T
ki

(xi − x(ki−1))

− αi
(
UT
ki

STSUki

)−1
ΣkiV

T
ki

(xi − x(ki−1))

+ βiΣkiV
T
ki

(xi − xi−1)

(ii)

+ ΣkiV
T
ki

(x(ki−1 : ki))

+ αi
(
UT
ki

STSUki

)−1
ΣkiV

T
ki

(x(ki−1 : ki))

where x(ki−1 : ki) = x(ki) − x(ki−1). The above Lyapunov analysis can be

applied to the linear transformation indicated by (i) and (ii) independently since

two error components

(
xi − x(ki−1)

)
∈ span{v1, . . . ,vki−1

} and x(ki−1 : ki) ∈ span{vki−1+1, . . . ,vki}

are orthogonal to each other, which gives∥∥∥VT
ki−1

(xi+1 − x(ki−1))
∥∥∥
2
≤ βi

σ1
σki−1

∥∥∥VT
ki−1

(xi − x(ki−1))
∥∥∥
2
,∥∥∥VT

ki−1+1:ki
(xi+1 − x(ki−1 : ki))

∥∥∥
2
≤ βi

σki
σki−1+1

∥∥∥VT
ki−1+1:ki

x(ki−1 : ki))
∥∥∥
2
,

where we used the fact that xi+1 ∈ span(Vki) for 0 ≤ i ≤ r if initial guess x0 = 0.

Applying the above splitting to all iterations recursively results in the proposed

upper bound of eq. (4.14).
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Appendix C

Bidiagonalization Based

Implementations of the Hybrid

M-IHS Techniques

For the derivations of the proposed hybrid methods, we used the SVD of the

sketched matrices, but the SVD may not be preferred in practical applications

due to relatively high computational complexity. In this subsection, we provide

the GKL bidiagonalization-based versions of the proposed techniques given in

Chapter 4 that require only matrix-vector and vector-vector multiplications, i.e.,

level 1 and 2 of BLAS operations.

For all proposed techniques, we use the bidiag2 procedure, which is described

in eq. (3.25). The input matrix A in eq. (3.25) will be replaced by one of the

sketched SA, SAT and WAST matrices according to the variant of the inter-

est. The upper bidiagonal decomposition can be computed by using the three

term recurrence given in eq. (3.26) by substituting an appropriate matrix for

A and setting the starting vector θ1q1 to one of the vectors (SA)TSb, ATb

and SATb, respectively, for the Hybrid M-IHS, the Hybrid Dual M-IHS and the

Hybrid Primal Dual M-IHS. To preserve the norm of the RHS vectors of the

sub-problems, reorthogonalization must be applied at least to Qk matrices. The
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classic or the modified Gram Schmidt processes can be used for this purpose [50].

Noting that the matrix Pk and Rk are not directly needed for any of the pro-

posed methods, so they may not be assembled at all. The Hybrid M-IHS and the

Hybrid Primal Dual M-IHS use the triangular matrix Tk := RkR
T
k instead of

the bidiagonal form Rk and the matrix Dk := VkR
−1
k which can be constructed

during the iterations of the GKL procedure as

dj = (qj − θjdj−1)
/
ρj, where j ∈ [k] and d0 = 0.

The Hybrid Dual M-IHS, on the other side, needs only the triangular form

T̃k = RT
kRk and the orthonormal transformation Qk. Once the proper pair of ma-

trices are constructed at the very beginning of iterations, any other GKL-related

matrices or sketched matrices SA,AST ,WAST will not be needed anymore and

can be removed from the memory.

The risk estimator given in eq. (4.10) at the i-th iteration of the Hybrid M-IHS

can be computed as:

V1,k(λ) =

∥∥(Tk + λIk)
−1 fi

∥∥
2

tr
(
(Tk + λI)−1

) , where fi = DT
k gi + TkD

T
k xi (C.1)

where the regularized HS step is:

∆xi(λi) = DkT (Tk + λiIk)
−1 DT

k

(
gi − λixi

)
.

The risk estimator in eq. (4.20) at the i-th iteration of the Hybrid Dual M-IHS

can be computed as:

V2,k(λ) =

∥∥∥∥(T̃k + λI
)−1

fi

∥∥∥∥
2

tr

((
T̃k + λIk

)−1) , where fi = QT
khi + T̃kQ

T
k ν

i (C.2)

where the regularized HS step is

∆νi(λi) = Qk

(
T̃k + λiIk

)−1
QT
k

(
hi − λiνi

)
.
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The risk estimator in eq. (4.30) at the j-th inner loop iteration of the i-th outer

loop of the Hybrid Primal Dual M-IHS can be computed as

V3,k(λ) =

∥∥(Tk + λI)−1 fi,j
∥∥
2

tr ((Tk + λIk))
where fi,j = DT

k gi,j + TkD
T
k

(
zi,j + SATνi

)
(C.3)

where the regularized HS step is

∆zi,j(λi,j) = DkTk (Tk + λi,jIk)
−1 DT

k

(
gi,j − λi,j

(
zi,j + SATνi

))
.

The GKL based algorithms are given in Algorithm 12, 13 and 14, respectively.

Algorithm 11 Finding trace of the inverse symmetric tridiagonal matrix

1: Input: T ∈ RL×L is a symmetric tridiagonal matrix

2: ρ = TL,L, τL = 1/ρ

3: for i = L− 1 : −1 : 1 do

4: θ = Ti+1,i/ρ, ρ = Ti,i − θ
5: τi = (1 + θ · τi+1)/ρ

6: end for

7: Output: tr (T−1) =
∑L

i τi

Algorithm 12 Hybrid M-IHS (for n� d)

1: Input: A ∈ Rn×d, b, m, x0

2: [SA, Sb] = RP fun(A, b, m)

3: [T,D] = GKL fun(SA, ASTSb, d)

4: while until stopping criteria do

5: g̃i = DTAT
(
b−Axi

)
6: x̃i = DTxi

7: f i = g̃i + TT x̃i

8: λi = argmin
λ

V1(λ) given in eq. (C.1)

9: ∆xi = DT (T + λiId)
−1 (g̃i − λix̃i)

10: k̂ = d− λi · tr
(
(T + λiI)−1

)
11: βi = k̂/m, αi = (1− βi)2

12: xi+1 = xi + αi∆xi + βi(x
i − xi−1)

13: end while
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Algorithm 13 Hybrid Dual M-IHS (for n� d)

1: Input : A ∈ Rn×d, b, m

2: SAT = RP fun(AT ,m)

3: [T, Q] = GKL fun(SAT , b, n)

4: ν0 = x0 = 0

5: while until stopping criteria do

6: h̃i = QT
(
b−Axi

)
7: ν̃i = QT ν̃i

8: f i = h̃i + Tν̃i

9: λi = argmin
λ

V2(λ) given in eq. (C.2)

10: ∆νi = Q
(
T + λiId

)−1 (
h̃i − λiν̃i

)
11: k̂ = d− λi · tr

((
T + λiI

)−1)
12: βi = k̂/m, αi = (1− βi)2

13: νi+1 = νi + αi∆νi + βi(ν
i − νi−1)

14: xi+1 = ATνi+1

15: end while

The GKL procedure which is applied only once at the beginning of the algo-

rithms can be computed in O(mmin(n, d)2) (or O(m2m
2
1)) operations for dense

matrices. The inversions at the numerator of proposed estimators given in

eq. (C.1), eq. (C.2) and eq. (C.3) can be computed in O(k) operations by the

LU factorization or the Givens Rotations thanks to the tridiagonal form. The

trace terms in the denominators can be calculated in 6k operations by modifying

the technique suggested by Elden in [93] as demonstrated in Algorithm 11.

As a result, for a given λ value, the proposed risk estimators can be calculated

in O(k) operations. Besides, most of the terms in the regularized HS steps are

already required for the risk estimators, hence the HS steps require only one tridi-

agonal matrix-vector multiplication and one dense matrix-vector multiplication

in addition to solving one triangular system. The MATLAB implementation of

the algorithms described in this section are also provided in the following link:

https://github.com/ibrahimkurban/Hybrid-M-IHS.
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Algorithm 14 Hybrid Primal Dual M-IHS (for n ≤ d or n ≥ d)

1: Input: A ∈ Rn×d, b, m1, m2

2: [SAT ] = RP fun(AT , m1)

3: [WAST ] = RP fun(AST , m2)

4: [T,D] = GKL fun(WAST , SATb, m1)

5: τ = −∞, i = −1, ν0 = x0 = 0, z0,0 = 0

6: while until first stopping criteria do

7: i = i+ 1

8: hi = b−Axi

9: ν̃i = SATνi (or ν̃i = Sxi)

10: zi,0 = zi−1,j, j = −1

11: while until second stopping criteria do

12: j = j + 1;

13: g̃i,j = DTSAT (hi −ASTzi,j)

14: z̃i,j = DT (z + ν̃i)

15: f i,j = g̃i,j + TT z̃i,j

16: λi,j = argmin
λ∈[τ, ∞]

V3(λ) given in eq. (C.3)

17: ∆zi,j = DT (T + λiId)
−1 (g̃i,j − λi,j z̃i,j)

18: k̂ = m1 − λi,j · tr
(
(T + λi,jI)−1

)
19: β1,j = k̂/m2, α1,j = (1− β1,j)2

20: zi,j+1 = zi,j + α1,j∆zi,j + β1,j(z
i,j − zi,j−1)

21: end while

22: ∆νi = (hi − λi,jνi −ASTzi,j)/λi,j

23: β2,i = k̂/m1, α2,i = (1− β2,i)2

24: νi+1 = νi + α2,i∆νi + β2,i(ν
i − νi−1)

25: xi+1 = ATνi+1

26: τ = max(λi,j, τ)

27: end while
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