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Linear Least Squares Problems
• Linear systems of equations:

Ax0 + w = b, A ∈ Rn×d.

• Aim is to recover x0 by observing A and b.

• My studies focus on the LS solutions:

xLS = argmin
x∈Rd

‖Ax− b‖22 =
(
ATA

)−1
ATb

• In practise due to ill conditioned nature of A, xLS may not be acceptable.
• Generally, it is used with an additional penalty:

x(λ) = argmin
x∈Rd

1

2
‖Ax− b‖22 +

λ

2
‖x‖22︸ ︷︷ ︸

f(x,λ)

= argmin
x∈R

∥∥∥∥[ A√
λId

]
x−

[
b
0

]∥∥∥∥2
2

=
(
ATA + λI

)−1
ATb

1 Find a proper estimate for λ
2 Construct the solution x(λ)
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Traditional Approaches: Solution Reconstruction for a Given λ

• Closed form solution: x(λ) = (ATA + λId)
−1ATb where A ∈ Rn×d

! O(nd2) complexity of multiplication
! Squares the condition number

• Direct methods: x(λ) = R−TQT b̃ where [AT
√
λI]T = QR and b̃T = [bT 0T ]

I Cholesky Dec., SVD, QR Dec. etc.1

! O(nd2) complexity of full decomposition

• First order iterative solvers

I CG, LSQR, ART, Chebyshev, GMRES, LSMR etc.2

X Requires a few matrix-vector or vector-vector multiplications per iteration
X O(nd) complexity per iteration

! Slow convergence:

∥∥xi − x(λ)
∥∥
2
≤

(√
κ(ATA + λId)− 1√
κ(ATA + λId) + 1

)i ∥∥x1 − x(λ)
∥∥
2
, 1 < i,
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Traditional Approaches: Computational Bottlenecks
• For the feasibility of the algorithms, in addition to the number of operations, there are

two factors related to the number of iterations:

• Distributed matrix-vector multiplications:

ATAx =
N∑
`

AT
` A`x, where A = [AT

1 . . . AT
N ]T

• Synchronization steps induced by inner products:

‖b‖22 =
N∑
`

‖b`‖22 , where b = [bT1 , . . . , bTN ]T

• Preconditioning could be a remedy: κ(NTA)� κ(A) or κ(AN)� κ(A)

Left Preconditioning: xleft = argmin
x∈Rd

∥∥NTAx−NTb
∥∥2
2
,

Right Preconditioning: xright = argmin
x∈Rd

‖ANx− b‖22 ,

xleft = xLS if R(NNTA) = R(A) or Nxright = xLS if R(NNTA) = R(AT ).
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İbrahim Kurban Özaslan M.S. Thesis Presentation 13 July 2020 5 / 43



Traditional Approaches: Estimation of λ

• If x0 was available

λ = argmin
λ∈R

‖x0 − x(λ)‖2 or λ = argmin
λ∈R

‖A(x0 − x(λ)‖2

• Discrepancy Principle, UPRE, GSURE and GCV select λ as the minimizer of T (λ) where

Ew [T (λ)] = Ew [‖x0 − x(λ)‖2] or Ew [T (λ)] = Ew [‖A(x0 − x(λ)‖2]

• Generalized Cross Validation3 uses following unbiased estimator of the predictive risk

Gfull(λ) =
‖b−Ax(λ)‖2
tr (I− PA(λ))

,

where PA(λ) = A
(
ATA + λId

)−1
AT and sdλ(A) = tr (PA(λ)).

! Search for minimizer of Gfull(λ) is a major issue
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Traditional Approaches: Hybrid Methods
• At the ith iteration, LSQR4 finds the solution of the following lower dimensional

sub-problem: (β1 = ‖b‖2)

yi(λ) = argmin
y∈Ri

‖Biy − β1e1‖22 + λ ‖y‖22 , where

where Bi ∈ Ri+1×i, xi = Qiy
i and span(Qi) = Ki(ATA, ATb)

• Hybrid-LSQR5 selects λ that minimizes:

Gproj(λ) =

∥∥Biy
i(λ)− β1e1

∥∥
2

tr (Ii+1 − PBi(λ))

X Minimization of Gproj(λ) requires O(i) operations

! To select a proper λ for the full problem, number of iterations i must be larger than k∗

! k∗ scales with the dimension of the problem
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Random Projection - I
• Reduces the dimension

• Bounds the number of iterations

• Convenient for parallel and distributed computations6

Definition (Oblivious `2 Subspace Embedding)

If a distribution D over Rm×n satisfies the following concentration inequality

PS∼D
(∥∥UTSTSU− I

∥∥
2
> ε
)
< δ,

with ∀U ∈ Rn×k, UTU = Ik, S ∈ Rm×n, then it is called (ε, δ, k)-OSE.

If the entries of S are drawn from N (0, 1/m) and m = O(ε−2 log(1/δ)), then S is an
(ε, δ, n)-OSE7, i.e., ∀a ∈ Rn, with probability of at least 1− δ:

(1− ε) ‖a‖2 ≤ ‖Sa‖2 ≤ (1 + ε) ‖a‖2
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Random Projection - II

• Gaussian Sketches ∼ O(mnd)

S

A

SA

nxdmxn mxd

• Randomized Orthogonal Systems ∼ O(nd log(m))

W R A SAP

S

Fast 
Transform

Random Row 
Scaling(±1)

Random Row 
Sampling

• CountSketch ∼ O(nnz(A))

S A

SA

nxdmxn mxd

• Sparse Sketches ∼ O(s · nnz(A))

S A

SA

nxdmxn mxdnxdmxn mxd
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RP-based Methods: Randomized Preconditioning
• Used for highly over-determined (n� d) or higly under-determined (n� d) problems

xright = argmin
x∈Rd

‖ANx− b‖22

• Blendenpik8 sets N = R−1s in LSQR where SA = QsRs and S is ROS
• LSRN9 sets N = VsΣ

−1
s in LSQR and CS where SA = UsΣsV

T
s and S is Gaussian

• Iterative Hessian Sketch (IHS)10 follows a different path

f(x) =
1

2
‖Ax‖22 + 〈ATb, x〉 ≈ 1

2
‖SAx‖22 + 〈ATb, x〉

increases accuracy over iterations by using the true gradient:

xi+1 = argmin
x∈Rd

1

2

∥∥∥SiA(x− xi)
∥∥∥2
2
− 〈AT (b−Axi), x〉

= xi +
(
ATSTi SiA

)−1
AT

(
b−Axi

)

I Si = S can be used for all iterations, but might cause divergence11.
I Accelerated-IHS (A-IHS)12 uses CG instead of GD to prevent divergence.
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Proposed M-IHS: Derivation

xi+1 = argmin
x∈Rd

∥∥∥SiA(x− xi)
∥∥∥2
2

+ λ ‖x‖22 − 2〈AT (b−Axi)− λxi, x〉

? Can we avoid change of S at every iteration?
? Can we accelerate the convergence of the iterations?

• Yes, both can be realizable via Heavy Ball Method (HBM):

xi+1 = xi + αi∇f(xi) + βi(x
i − xi−1)

• The optimal fixed momentum parameters for LS problems are

α∗ =
4

(
√
σ1 +

√
σd)2

, β∗ =

√
σ1 −

√
σd√

σ1 +
√
σd

• Momentum-IHS is obtained by incorporating the HBM into the IHS updates:

∆xi = argmin
x∈Rd

‖SAx‖22 + λ ‖x‖22 − 2
〈
AT (b−Axi)− λxi, x

〉
,

xi+1 = xi + α∆xi + β
(
xi − xi−1

)
,
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Proposed M-IHS: Extension to Under-determined Regime
• A dual of the regularized LS problem is:

ν(λ) = argmin
ν∈Rn

1

2

∥∥ATν
∥∥2
2

+
λ

2
‖ν‖22 − 〈b, ν〉︸ ︷︷ ︸

g(ν,λ)

,

and the relation between the solutions is

ν(λ) = (b−Ax(λ))/λ⇐⇒ x(λ) = ATν(λ).

• The Dual M-IHS uses following updates:

∆νi = argmin
ν∈Rn

∥∥SATν
∥∥2
2

+ λ ‖ν‖22 − 2
〈
b−AATνi − λνi), ν

〉
,

νi+1 = νi + α∆νi + β
(
νi − νi−1

)
.
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Proposed M-IHS: Convergence Properties

Theorem (Non-asymptotic Analysis)

Let U1 ∈ Rn×d consists of the first n rows of an orthogonal basis for [AT
√
λId]

T . Let the sketching
matrix S ∈ Rm×n be drawn from a distribution D such that

PS∼D
(∥∥UT

1 STSU1 −UT
1 U1

∥∥
2
≥ ε
)
< δ, ε ∈ (0, 1).

Then, the M-IHS with the following momentum parameters

β∗ =
(
ε
/(

1 +
√

1− ε2
))2

, α∗ = (1− β∗)
√

1− ε2,

converges to the optimal solution x(λ) at the following rate with a probability of at least (1− δ):∥∥xi+1 − x(λ)
∥∥
D−1
λ

≤ ε

1 +
√

1− ε2
∥∥xi − x(λ)

∥∥
D−1
λ

,

where D−1λ is the diagonal matrix whose diagonal entries are
√
σ2
i + λ, 1 ≤ i ≤ d.
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Proposed M-IHS: Total Number of Iterations

Corollary

For some ε ∈ (0, 1/2) and arbitrary η, the number of iterations for the M-IHS to obtain an
η-optimal solution approximation in `2-norm is upper bounded by

N =

⌈
log(η) log(C)

log(ε)− log(1 +
√

1− ε2)

⌉
where the constant C =

√
κ(ATA + λId)

∥∥xN − x(λ)
∥∥

2
≤ η ‖x(λ)‖2
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Proposed M-IHS: Sketch Size

Lemma (Lower Bounds on the Sketch Size)

If the sketching matrix S ∈ Rm×n is chosen in one of the following cases, then the condition in the
theorem

PS∼D
(∥∥UT

1 STSU1 −UT
1 U1

∥∥
2
≥ ε
)
< δ, ε ∈ (0, 1)

is satisfied.

1 S is a CountSketch with

m = Ω
(
sdλ(A)2/(ε2δ)

)
2 S is a Sub-Gaussian sketching matrix with

m = Ω(sdλ(A)/ε2)

3 S is a ROS matrix with

m = Ω
(
(sdλ(A) + log(1/εδ) log(sdλ(A)/δ)) /ε2

)

4 S is a Sparse Sketching with

s = Ω(logα(sdλ(A)/δ)/ε)

non-zero elements in each column and

m = Ω(α · sdλ(A) log(sdλ(A)/δ)/ε2)

where α > 2, δ < 1/2, ε < 1/2
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Proposed M-IHS: Empirical Convergence

Remark (Asymptotic Analysis)

If the entries of the sketching matrix are independent, zero mean, unit variance with bounded higher
order moments, then the M-IHS and the Dual M-IHS with the following momentum parameters

β =
sdλ(A)

m
, α = (1− β)2

will converge to the optimal solutions with a convergence rate of
√
β as m→∞ while sdλ(A)/m

remains constant. Any sketch size m > sdλ(A) can be chosen to obtain an η-optimal solution

approximation in at most
log(η)

log(
√
β)

iterations.

∥∥xi − x(λ)
∥∥

D−1
λ
≤

(√
sdλ(A)

m

)i
‖x(λ)‖D−1

λ
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Proposed M-IHS: Theoretical vs Numerical Convergence
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(a) Dense problem with size 32000× 1000
κ(A) = 108, sdλ(A) = 119, and ROS matrix via

DCT
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(b) Sparse problem with size 24000× 1200,
κ(A) = 107, sparsity ratio 0.1%, sdλ(A) = 410,

and CountSketch
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Proposed M-IHS: Inexact Sub-solver

• The next step in the M-IHS updates:

∆xi = argmin
x∈Rd

‖SAx‖22 + λ ‖x‖22 + 2
〈
∇f(xi, λ), x

〉
can be obtained by solving the following lower dimensional sub-problems(

(SA)T (SA) + λId

)
∆xi = −∇f(xi, λ).

• We introduced AAb Solver for the the problems in the form of ATAx = b.
• Does not square the condition number
• More stable than symmetric CG or Lanczos Tridiagonalization algorithms

• Stopping criterion: εsub ≥
∥∥ATAxi−b

∥∥
2

‖b‖2
• Computes the solution in O(md) operations
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Proposed M-IHS: Overall Algorithms

M-IHS (for n ≥ d)

1: Input: A, b, m, λ, x1, sdλ(A), εsub

2: SA = RP fun(A,m)

3: β = sdλ(A)/m, α = (1− β)2

4: while until stopping criteria do

5: gi = AT (b−Axi)− λxi

6: ∆xi = AAb Solver(SA, gi, λ, εsub)

7: xi+1 = xi + α∆xi + β(xi − xi−1)

8: end while

Dual M-IHS (for n ≤ d)

1: Input: A, b, m, λ, sdλ(A), εsub

2: SAT = RP fun(AT ,m)

3: β = sdλ(A)/m, α = (1− β)2, ν0 = 0

4: while until stopping criteria do

5: gi = b−AATνi − λνi

6: ∆νi = AAb Solver(SAT , gi, λ, εsub)

7: νi+1 = νi + α∆νi + β(νi − νi−1)

8: end while
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Proposed M-IHS: An Observation

The following linear systems is d× d
dimensional(

(SA)T (SA) + λId

)
∆xi = −∇f(xi, λ).

where SA ∈ Rm×n with m ∼ sdλ(A)� n, d
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Figure: Dense problem with size 32000× 1000
κ(A) = 108, sdλ(A) = 119, and ROS matrix via

DCT
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Proposed M-IHS: Two-Stage Sketching
The dual of the problem

∆xi = argmin
x∈Rd

‖SAx‖22 + λ ‖x‖22 + 2
〈
∇f(xi, λ), x

〉
is a highly over-determined d×m dimensional problem:

z∗ = argmin
z∈Rm

1

2

∥∥ATST z +∇f(xi, λ)
∥∥2
2

+
λ

2
‖z‖22︸ ︷︷ ︸

h(z,xi,λ)

,

with ∆xi = (∇f(xi, λ)−ATST z∗)/λ.

Another RP can be applied through W ∈ Rm2×d as

∆zj = argmin
z∈Rm

∥∥WATST z
∥∥2
2

+ λ ‖z‖22 + 2
〈
∇zh(zj ,xi, λ), z

〉
,

zj+1 = zj + α2∆zj + β2
(
zj − zj−1

)
,

where β2 = sdλ(A)/m2 and α2 = (1− β2)2. AAb Solver can be used for the sub-problems:(
(WATST )T (WATST ) + λI

)
∆zj = −∇h(zj ,xi, λ)
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Primal Dual M-IHS (for n ≥ d)

1: Input: A, b, m1, m2, λ, sdλ(A), εsub

2: SA = RP fun(A,m1)

3: WATST = RP fun(ATST ,m2)

4: β` = sdλ(A)/m`, ` = 1, 2

5: α` = (1− β`)2 ` = 1, 2

6: x0 = 0, z1,0 = 0

7: for i=1:N do

8: bi = AT (b−Axi)− λxi

9: for j=1:M do

10: gi,j = SA(bi −ATST zi,j)− λzi,j

11: ∆zi,j = AAb Solver(WATST ,gi,j , λ, εsub)

12: zi,j+1 = zi,j + α2∆zi,j + β2(zi,j − zi,j−1)

13: end for

14: ∆xi = (bi−ATST zi,M+1)/λ, z1,0 = zM+1,M

15: xi+1 = xi + α1∆xi + β1(xi − xi−1)

16: end for

Primal Dual M-IHS (for n ≤ d)

1: Input: A, b, m1, m2, λ, sdλ(A), εsub

2: SAT = RP fun(AT ,m1)

3: WAST = RP fun(SAT ,m2)

4: β` = sdλ(A)/m`, ` = 1, 2

5: α` = (1− β`)2, ` = 1, 2

6: ν1,0 = 0, z1,0 = 0

7: for i=1:N do

8: bi = b−AATνi − λνi

9: for j=1:M do

10: gi,j = SAT (bi −AST zi,j)− λzi,j

11: ∆zi,j = AAb Solver(WAST ,gi,j , λ, εsub)

12: zi,j+1 = zi,j + α2∆zi,j + β2(zi,j − zi,j−1)

13: end for

14: ∆νi = (bi−AST zi,M+1)/λ, z1,0 = zM+1,M

15: νi+1 = νi + α1∆νi + β1(νi − νi−1)

16: end for
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Experiments: Un-regularized Problems

10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12 12.2

-10

-8

-6

-4

-2

0

2

4

6

8

10.74 10.76 10.78 10.8 10.82 10.84

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

12.07 12.075 12.08 12.085 12.09

0

1

2

3

4

5

6

Figure: Performance comparison on an un-regularized LS problem with size 216 × 2000 and
κ(A) = 108. In order to compare the convergence rates, number of iterations for all solvers are set to

N = 100 with the same sketch size: m = 4000.
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Experiments: Over-determined Regularized Problems
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Figure: Performance comparison on a regularized LS problem (n� d) with dimensions
(n, d,m, sdλ(A)) = (216, 4000, 4000, 443).
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Experiments: Scalability to Larger Size Problems
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Figure: Complexity of the algorithms in terms of operation count and computation time on a set of
5 · 104 × 500 · γ dimensional over-determined problems with m = d and sdλ(A) = d/10.
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Proposed Hybrid M-IHS - I
• The Hybrid M-IHS uses the following update at the ith iteration:(

(SA)T (SA) + λiId
)

∆xi(λi) = AT (b−Axi)− λixi,
xi+1 = xi + αi∆xi(λi) + βi(x

i − xi−1),

with varying λi, αi and βi parameters.

• After obtaining a proper estimate for the λi, the momentum parameters αi and βi can be
selected as: (SA = UsΣsV

T
s )

βi = sdλi(Σs)/m, αi = (1− βi)2.

• To find a proper λi for the ith sub-problem, we can utilize the GCV as13:

Gfull(λ) =
‖b−Ax(λ)‖2
tr (I− PA(λ))

−→ λi = argmin
λ∈R

∥∥b−A
(
xi + ∆xi(λ)

)∥∥
2

tr (I− PΣs(λ))

! Converges very fast but requires access to A for each λ
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Proposed Hybrid M-IHS - II
• To avoid access to A, we can give up on the noise components outside R(A):

λA‡x(λ) = UT (b−Ax(λ)), (A‡ = UΣ−1VT )

• If A‡ is replaced by (SA)‡, then the following biased estimate is obtained:

λ
∥∥∥(SA)‡x(λ)

∥∥∥
2

= λ
∥∥Σ−1s VT

s x(λ)
∥∥
2

=
∥∥∥(SA)‡AT (b−Ax(λ))

∥∥∥
2
, (1)

where SA = UsΣsV
T
s and the bias is given by14

ES

[∥∥∥(SA)‡AT (b−Ax(λ))
∥∥∥
2

]
= θ

∥∥UT (b−Ax(λ))
∥∥
2
.

• To get a λ estimate for the ith sub-problem, we substitute xi + ∆xi(λ) for x(λ) in eq. (1)

λi = argmin
λ∈R

λ
∥∥Σ−1s VT

s

(
xi + ∆xi(λ)

)∥∥
2

d− tr (PΣs(λ))
.
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Proposed Hybrid Dual M-IHS
• The Hybrid Dual M-IHS uses the following update at the ith iteration:(

(AST )T (SAT ) + λiIn
)

∆νi(λi) = b−AATνi − λiνi

νi+1 = νi + αi∆νi(λi) + βi(ν
i − νi−1)

with varying λi, αi and βi parameters.

• Momentum parameters can be chosen in the same fashion as the Hybrid M-IHS after
estimating a proper λi.
• λν(λ) = b−Ax(λ), so the GCV can be written as

Gfull(λ) =
λ ‖ν(λ)‖2

tr (In − PA(λ))
. (2)

• To find a proper λi estimate, we substitute νi + ∆νi(λ) for ν(λ) in eq. (2)

λi = argmin
λ∈R

λ
∥∥νi + ∆νi(λ)

∥∥
2

tr (In − PΣs(λ))
.
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İbrahim Kurban Özaslan M.S. Thesis Presentation 13 July 2020 30 / 43



Proposed Hybrid Dual M-IHS
• The Hybrid Dual M-IHS uses the following update at the ith iteration:(

(AST )T (SAT ) + λiIn
)

∆νi(λi) = b−AATνi − λiνi

νi+1 = νi + αi∆νi(λi) + βi(ν
i − νi−1)

with varying λi, αi and βi parameters.
• Momentum parameters can be chosen in the same fashion as the Hybrid M-IHS after

estimating a proper λi.
• λν(λ) = b−Ax(λ), so the GCV can be written as

Gfull(λ) =
λ ‖ν(λ)‖2

tr (In − PA(λ))
. (2)

• To find a proper λi estimate, we substitute νi + ∆νi(λ) for ν(λ) in eq. (2)

λi = argmin
λ∈R

λ
∥∥νi + ∆νi(λ)

∥∥
2

tr (In − PΣs(λ))
.
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Hybrid M-IHS (for n� d)

1: Input: A ∈ Rn×d, b, m, x0

2: SA = RP fun(A, m)

3: [Σs,Vs] = svd(SA)

4: while until stopping criteria do

5: gi = VT
s AT

(
b−Axi

)
6: f i = Σ−1s gi + ΣsV

T
s xi

7: λi = argmin
λ

∥∥∥(Σ2
s + λI

)−1
f i
∥∥∥
2

tr ((Σ2
s + λI)−1)

8: ∆xi = Vs

(
Σ2
s + λiI

)−1 (
gi − λiVT

s xi
)

9: k̂ = d− λitr
((

Σ2
s + λiI

)−1)
10: βi = k̂/m

11: αi = (1− βi)2

12: xi+1 = xi + αi∆xi + βi(x
i − xi−1)

13: end while

Hybrid Dual M-IHS (for n� d)

1: Input: A ∈ Rn×d, b, m

2: SAT = RP fun(AT ,m)

3: [Σs, Vs] = svd(SAT , n)

4: while until stopping criteria do

5: h̃i = VT
s

(
b−AATνi

)
6: f i = h̃i + Σ2

sV
T
s ν

i

7: λi = argmin
λ

∥∥∥(Σ2
s + λI

)−1
f i
∥∥∥
2

tr ((Σ2
s + λI)−1)

8: ∆νi = Vs

(
Σ2
s + λiId

)−1 (
h̃i − λiVT

s ν
i
)

9: k̂ = d− λitr
((

Σ2
s + λiI

)−1)
10: βi = k̂/m

11: αi = (1− βi)2

12: νi+1 = νi + αi∆νi + βi(ν
i − νi−1)

13: end while
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Proposed Hybrid Primal Dual M-IHS - I
• In main (outer) iterations, it uses Hybrid Dual M-IHS update

∆νi(λi) = argmin
ν∈Rn

1

2

∥∥SATν
∥∥2
2

+
λ

2
‖ν‖22 + 〈∇g(νi, λi), ν〉 (3)

νi+1 = νi + αi∆νi(λi) + βi(ν
i − νi−1)

• Instead of eq. (3), the dual problem:

zi(λ) = argmin
z∈Rm1

∥∥AST z +∇g(νi, λ)
∥∥2
2

+ λ ‖z‖22︸ ︷︷ ︸
h(z,νi,λ)

, (4)

is solved by using following inner iterations:

∆zi,j(λi,j) = argmin
z∈Rm1

∥∥WAST z
∥∥2
2

+ λi,j ‖z‖22 + 2〈∇zh(zi,j ,νi, λi,j), z〉,

zi,j+1 = zi,j + αj∆zi,j(λi,j) + βj(z
i,j − zi,j−1),
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Proposed Hybrid Primal Dual M-IHS - II

• By using the following relation

SATνi + SAT∆νi(λi)
Hybrid PD M-IHS←−−−−−−−−−−

inner loop
SATνi + zi,j + ∆zi,j(λi,j)

• We combined risk functions used in Hybrid M-IHS and Hybrid Dual M-IHS:

λi = argmin
λ∈R

λ
∥∥Σ−1s VT

s

(
xi + ∆xi(λ)

)∥∥
2

d− tr (PΣs(λ))
and λi = argmin

λ∈R

λ
∥∥νi + ∆νi(λ)

∥∥
2

tr (In − PΣs(λ))

• Obtained the following risk function:

λi,j = argmin
λ∈R

λ
∥∥Σ−1w VT

w(SATνi + zi,j + ∆zi,j(λ))
∥∥
2

m1 − tr (PΣw(λ))

where WAST = UwΣwVT
w.

İbrahim Kurban Özaslan M.S. Thesis Presentation 13 July 2020 33 / 43



Proposed Hybrid Primal Dual M-IHS - II

• By using the following relation

SATνi + SAT∆νi(λi)
Hybrid PD M-IHS←−−−−−−−−−−

inner loop
SATνi + zi,j + ∆zi,j(λi,j)

• We combined risk functions used in Hybrid M-IHS and Hybrid Dual M-IHS:

λi = argmin
λ∈R

λ
∥∥Σ−1s VT

s

(
xi + ∆xi(λ)

)∥∥
2

d− tr (PΣs(λ))
and λi = argmin

λ∈R

λ
∥∥νi + ∆νi(λ)

∥∥
2

tr (In − PΣs(λ))

• Obtained the following risk function:

λi,j = argmin
λ∈R

λ
∥∥Σ−1w VT

w(SATνi + zi,j + ∆zi,j(λ))
∥∥
2

m1 − tr (PΣw(λ))

where WAST = UwΣwVT
w.
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Hybrid Primal Dual M-IHS (for n ≤ d or n ≥ d)

1: Input: A ∈ Rn×d, b, m1, m2

2: [SAT ] = RP fun(AT , m1)

3: [WAST ] = RP fun(AST , m2)

4: [Σw,Vw] = svd(WAST , m1)

5: τ = −∞, i = −1, ν0 = x0 = 0, z0,0 = 0

6: while until first stopping criteria do

7: i = i+ 1

8: hi = b−Axi

9: ν̃i = SATνi

10: zi,0 = zi−1,j , j = −1

11: while until second stopping criteria do

12: j = j + 1;

13: gi,j = VT
wSAT (hi −AST zi,j)

14: z̃i,j = VT
w(zi,j + ν̃i)

15: f i,j = Σ−1
w gi,j + Σwz̃i,j

16: λi,j = argmin
λ≥τ

∥∥∥(Σ2
w + λI

)−1
f i
∥∥∥
2

tr ((Σ2
w + λI)−1)

17: ∆zi,j = Vw

(
Σ2
w + λi,jI

)−1 (
gi,j − λi,j z̃i,j

)
18: k̂ = m1 − λi,jtr

((
Σ2
w + λi,jI

)−1
)

19: β1,j = k̂/m2

20: α1,j = (1− β1,j)2

21: zi,j+1 = zi,j +α1,j∆zi,j +β1,j(z
i,j−zi,j−1)

22: end while

23: ∆νi = (hi − λi,jνi −AST zi,j+1)/λi,j

24: β2,i = k̂/m1

25: α2,i = (1− β2,i)2

26: νi+1 = νi + α2,i∆νi + β2,i(ν
i − νi−1)

27: xi+1 = ATνi+1

28: τ = max(λi,j , τ)

29: end while
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Figure: Error and parameter estimation performances on an image de-blurring problem with Gaussian psf.
(n, d,m1,m2) = (104, 104, 2k∗, 5k∗)

Table: Effective ranks and the number of iterations that the iterative algorithms need to obtain the results.

Techniques 0.3% 0.6% 1% 4% 8% 10% 12% 15%

k∗ 293 259 245 195 163 164 162 158
Hybrid LSQR 39 27 23 8 4 4 3 38
Hybrid-modified 593 559 545 495 463 464 462 458
Hybrid M-IHS 14 15 14 11 13 12 12 10
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Figure: Error and parameter estimation performances on a seismic travel-time tomography problem with Fresnel wave
model. (n, d,m1,m2) = (2 · 104, 104, 2k∗, 5k∗)

Table: Effective ranks and the number of iterations that the iterative algorithms need to obtain the results.

Techniques 0.3% 0.6% 1% 4% 8% 10% 12% 15%

k∗ 1324 1006 759 417 261 224 188 176
Hybrid LSQR 43 33 27 11 7 69 63 57
Hybrid-modified 2260 1879 1676 1386 1266 1256 1227 1994
Hybrid M-IHS 10 10 9 9 10 10 12 10
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Figure: Error and parameter estimation performances on X-ray tomography problem with parallel beam geometry.
(n, d,m) = (12780, 2500, 5000)

Table: Effective ranks and the number of iterations that the iterative algorithms need to obtain the results.

Techniques 0.3% 0.6% 1% 4% 8% 10% 12% 15%

k∗ 2495 2489 2480 2460 2356 2306 2260 2106
Hybrid LSQR 38 29 22 9 6 133 124 126
Hybrid-modified 2498 2492 2483 2463 2359 2309 2263 2109
Hybrid M-IHS 18 17 16 13 12 9 10 9
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Figure: Error and parameter estimation performances on seismic travel-time tomography problem with straight-line wave
model. (n, d,m) = (64000, 1600, 3200)

Table: Effective ranks and the number of iterations that the iterative algorithms need to obtain the results.

Techniques 0.3% 0.6% 1% 4% 8% 10% 12% 15%

k∗ 1590 1581 1565 1473 1226 1221 1214 1180
Hybrid LSQR 48 24 22 6 284 280 276 256
Hybrid-modified 1600 1600 1600 1600 1600 1600 1593 1534
Hybrid M-IHS 18 18 17 13 10 8 9 8
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Figure: Error and parameter estimation performances on a randomly generated data.
(n, d,m) = (1500, 104, 3000)

Table: Effective ranks and the number of iterations that the iterative algorithms need to obtain the results.

Techniques 0.3% 0.6% 1% 4% 8% 10% 12% 15%

k∗ 879 832 791 679 603 579 563 527
Hybrid LSQR 177 109 58 17 10 98 82 70
Hybrid-modified 1179 1132 1091 979 903 879 863 827
Hybrid M-IHS 7 7 7 8 10 10 10 10
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Figure: Convergence behaviour of the hybrid methods in each previous example at a noise level of 1%.
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(a) x0 (b) b (c) xOracle (d) xM-IHS (e) xHybrid-LSQR

Figure: Example 1 (n = d): image deblurring problem with Gaussian psf

(a) x0 (b) b (c) xOracle (d) xM-IHS (e) xHybrid-LSQR

Figure: Example 2 (n ≥ d): seismic travel-time tomography problem with Fresnel wave model
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(a) x0 (b) b (c) xOracle (d) xM-IHS (e) xHybrid-LSQR

Figure: Example 3 (n� d): X-ray tomography problem with parallel beam geometry

(a) x0 (b) b (c) xOracle (d) xM-IHS (e) xHybrid-LSQR

Figure: Example 4 (n� d): seismic travel-time tomography problem with straight-line wave model
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Conclusions and Future Work

X We introduced a group of solver for large scale linear least squares problems.

X The proposed algorithms are effective as long as the statistical dimension is sufficiently
smaller than at least one size of the coefficient matrix.

X They have various desirable properties for modern computing devices that are prevalent in
large scale applications.

X In regularized problems, if the regularization parameters are unknown, the Hybrid M-IHS
algorithms have capability of finding better parameters than direct methods in far fewer
number of iterations than the conventional hybrid methods.

• The effect of the inexact sub-solvers on the convergence rate of the M-IHS algorithms can
be studied as a future direction.

• Classical sketching methods can be investigated to estimate proper regularization
parameter and to construct regularized solution.
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İbrahim Kurban Özaslan M.S. Thesis Presentation 13 July 2020 43 / 43



Bibliography II

[13] J. Lacotte and M. Pilanci, “Faster least squares optimization,” arXiv preprint arXiv:1911.02675, 2019.

[14] M. Pilanci and M. J. Wainwright, “Randomized sketches of convex programs with sharp guarantees,” IEEE Trans. Inform. Theory, vol. 61, no. 9,
pp. 5096–5115, 2015.

[15] P. C. Hansen, “Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems,” Numer. Algorithms, vol. 6, no. 1, pp. 1–35,
1994.

[16] S. Gazzola, P. C. Hansen, and J. G. Nagy, “Ir tools: A matlab package of iterative regularization methods and large-scale test problems,” Numer.
Algorithms, vol. 81, no. 3, pp. 773–811, 2019.
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RP-based Methods: Classical Sketching
• Based on observing (SA,Sb) pair instead of (A,b)

x̂(λ) = argmin
x∈Rd

1

2
‖SAx− Sb‖22 +

λ

2
‖x‖22

• Seeks ζ-optimal cost approximation15:

f(x̂(λ), λ) ≤ (1 + ζ)f(x(λ), λ)

• O(nd log(m) +md2) vs O(nd2)
• Sub-optimal for obtaining a η-optimal solution approximation16:

‖x̂(λ)− x(λ)‖W ≤ η ‖x(λ)‖W ,

for example, if w ∼ N (0, σ2wIn), then:

Ew [‖xLS − x0‖A] � σ2wd

n
whereas ES,w [‖x̂(λ)− x0‖A] � σ2wd

min(m,n)
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Estimation of the Statistical Dimension
The statistical dimension of A ∈ Rn×d can be estimated as

sdλ(A) = tr
(
A
(
ATA + λI

)−1
AT
)

= tr
(
I− λ

(
ATA + λI

)−1)
= d− λEv

[
tr
(
vT
(
ATA + λI

)−1
v
)]
≈ d− λ

T

T∑
i=1

〈vi, zi〉

where
(
ATA + λI

)
z = vi and vi’s are Rademacher r.v.’s with covariance E

[
vvT

]
= Id.

Inexact Hutchinson Trace Estimator
1: Input: SA ∈ Rm×d, λ, T, εtr
2: v` = {−1,+1}d, ` = 1, . . . , T
3: τ = 0
4: for i = 1:T do
5: zi = AAb Solver(SA,vi, λ, εtr)
6: τ = τ + λ〈vi, zi〉
7: end for
8: Output: ŝdλ = d− τ/T
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Numerical Experiments and Comparisons

Data is generated syntactically as following:

1 The entries of A were drawn from the distribution N (1d,Γ) where Γij = 5 · 0.9|i−j|.

2 Singular values were replaced with philips profile provided in RegTool17.

3 Condition number κ(A) was set to 108.

4 For un-regularized problems, the entries of x0 were sampled from Uni[-1,1].

5 For regularized problems, the inputs provided by RegTool were used.

6 Additive i.i.d. Gaussian noise at level of ‖w‖2 / ‖Ax‖2 = 1% was used for regularized
problems.

Results were averaged over 32 MC simulations.
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Experiments: Under-determined Regularized Problems
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Figure: Performance comparison on a regularized LS problem (n� d) with dimensions
(n, d,m, sdλ(A)) = (4000, 216, 4000, 462).
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Experiments: Scalability to Larger Size Problems - II
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Figure: Complexity of the each stage in terms of operation count and computation time on a set of
5 · 104 × 500 · γ dimensional over-determined problems with m = d and sdλ(A) = d/10.
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Experiments: Effect of sdλ(A) on Performance of the Inexact Schemes
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Figure: Complexity of the algorithms in terms of operation count and computation time on a
5 · 104 × 4 · 103 dimensional problem for different ρ = sdλ(A)/d ratios.
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Experiments: Un-regularized LS Problem
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Figure: Performance comparison of the M-IHS, ARK and CGLS on a set of un-regularized LS problem
with size 216 × 500 and different condition numbers.
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Numerical Experiments and Comparisons for Hybrid Methods

• We used IR tools18 to generate realistic examples:

1 Image de-blurring problem with Gaussian psf: 104 × 104

2 Seismic travel-time tomography problem with Fresnel wave model: 2 · 104 × 104

3 X-ray tomography problem with parallel beam geometry: 12780× 2500

4 Seismic travel-time tomography with Straight-Line wave model: 6400× 1600

5 Randomly generated A and x0 as earlier: 1500× 4 · 104

• We calculated relative error with respect to the effective true input xk∗ = Vk∗V
T
k∗x0

• Additive Gaussian noise with 8 different levels was used. Noise level is determined by the

ratio
‖w‖2
‖Ax0‖2

.

• Results were averaged over 20 noise realizations.
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Numerical Experiments and Comparisons for Hybrid Methods
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Figure: The size and the singular value profiles of the coefficient matrices used in the numerical
experiments.
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Numerical Experiments and Comparisons

Table: PSNR (in dB) values of the reconstructed images measured with respect to the effective true
input xk∗ .

ex. no ex. 1 ex. 2 ex. 3 ex. 4

‖w‖/‖Ax0‖ 0.3% 1% 10% 0.3% 1% 10% 0.3% 1% 10% 0.3% 1% 10%

OR-LS 36.00 35.71 31.48 28.46 23.65 22.89 49.20 39.79 24.93 35.92 28.99 22.56
Hybrid M-IHS 35.95 35.6 29.27 28.44 23.60 22.89 47.70 39.49 24.82 36.02 28.92 22.56
Hybrid LSQR 30.57 29.80 24.93 22.58 16.09 19.37 38.40 31.43 24.02 15.95 15.93 22.04
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Linear Least Squares Problems
• Linear Systems of equations:

Ax0 + w = b, A ∈ Rn×d.
• Aim is to recover x0 by observing A and b:

(A = UΣVT )

xLS = argmin
x∈Rd

‖Ax− b‖22 =

d∑
i=1

φi
uTi b

σi
vi =

k∗∑
i=1

(
vTi x0 +

uTi w

σi

)
vi+

Noise Enhancement︷ ︸︸ ︷
d∑

i=k∗+1

(
vTi x0 +

uTi w

σi

)
vi
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Regularized LS Problems

x(Φ) = VΦΣ−1UTb =
d∑
i=1

φi
uTi b

σi
vi, assume |vTi x0| ≤

|uTi w|
σi

for i ∈ [k∗]

• Hard thresholding: φi =

{
1, 0 < i < k∗

0, otherwise

• x(k∗) = Uk∗Σ−1k∗ VT
k∗ =

k∗∑
i=1

uTi b

σi
vi

• Soft thresholding: φi =
σ2i

σ2i + λ
≈
{

1, σi � λ
0, σi � λ

• sdλ(A) =
d∑
i=1

φi =
d∑
i=1

σ2
i

σ2
i + λ

≈ k∗

• x(λ) = VΣ(Σ2 + λId)
−1UTb = (ATA + λId)

−1ATb

• x(λ) = argmin
x∈Rd

1

2
‖Ax− b‖22 +

λ

2
‖x‖22︸ ︷︷ ︸

f(x,λ)
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