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Abstract— Synthesis of optimization algorithms typically fol-
lows a design-then-analyze approach, which can obscure fun-
damental performance limits and hinder the systematic devel-
opment of algorithms that operate near these limits. Recently,
a framework grounded in robust control theory has emerged
as a powerful tool for automating algorithm synthesis. By
integrating design and analysis stages, fundamental perfor-
mance bounds are revealed and synthesis of algorithms that
achieve them is enabled. In this paper, we apply this framework
to design algorithms for solving strongly convex optimization
problems with linear equality constraints. Our approach yields
a single-loop, gradient-based algorithm whose convergence rate
is independent of the condition number of the constraint matrix.
This improves upon the best known rate within the same
algorithm class, which depends on the product of the condition
numbers of the objective function and the constraint matrix.

Index Terms— Automated algorithm synthesis, circle crite-
rion, internal model principle, Nevanlinna-Pick interpolation,
optimization, primal-dual methods, robust control.

I. INTRODUCTION

The design and analysis of optimization algorithms typi-
cally begins with selecting an appropriate algorithmic struc-
ture based on the problem’s optimality conditions. This is
followed by a convergence analysis, which often relies on
creative and problem-specific reasoning. Such a design-then-
analyze approach typically requires deriving tight analytical
inequalities—an inherently challenging and non-systematic
task. This difficulty contributes, in part, to the limited under-
standing of fundamental performance limits within specific
algorithm classes.

In his seminal work [1], Nesterov established lower
bounds on the worst-case convergence rates of gradient-
based algorithms in the unconstrained setting and proposed
algorithms that attain these bounds. Although the lower
bounds are derived using an infinite-dimensional setup, the
design and analysis of the corresponding algorithms rely
on the estimate-sequence technique, which does not easily
generalize to broader settings. Given the importance of
understanding fundamental performance limits, substantial
effort has been directed toward the study of accelerated opti-
mization algorithms [2]-[5]. However, a closer examination
reveals that many of these approaches start with a predefined
algorithmic structure and use reverse engineering, offering
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limited insight into the underlying principles that govern
optimal performance.

Viewing optimization algorithms through the lens of dy-
namical systems and applying Lyapunov stability theory
enables a system-theoretic understanding of their behavior.
Although Lyapunov-based analysis is generally regarded
as conservative, convergence rates matching known lower
bounds can be achieved using Popov-type Lyapunov func-
tions [6], [7]. Extending such functions to descent-ascent al-
gorithms for constrained optimization or minimax problems,
however, remains a significant challenge. In these settings,
alternative Lyapunov functions have been proposed [8]-[10],
but their design often relies on problem-specific insight. A
complementary approach involves fixing the structure of a
Lyapunov function and using computational tools to search
for valid certificates or associated algorithms [11], [12].
While this method offers practical advantages, it introduces
inherent conservatism and, as a result, falls short of revealing
fundamental performance limits.

Recently, tools and concepts from robust control the-
ory have been employed to demonstrate that Nesterov’s
lower complexity bound also holds in finite-dimensional
settings [13]. Building on this insight, a general framework
has been developed for the design and analysis of centralized
and distributed unconstrained optimization algorithms [14]-
[16]. This framework models optimization algorithms as
transfer functions within a feedback system, derives ana-
Iytic conditions to guarantee desirable algorithmic properties,
and uses Nevanlinna-Pick interpolation to construct transfer
functions that meet these conditions. In addition to enabling
automated algorithm synthesis, this approach provides a
means for identifying fundamental performance limits when
algorithm specifications are expressed through necessary and
sufficient conditions.

In this paper, we build on the framework introduced
in [14]-[16] to design algorithms for smooth, strongly con-
vex optimization problems subject to linear equality con-
straints. While such constraints may appear restrictive, they
naturally arise in a range of applications, including consensus
problems [17] and incompressible fluid dynamics [18].

Among single-loop gradient-based algorithms for convex
problems with linear equality constraints, the best known
linear convergence rate is achieved by Gradient Descent-
Ascent (GDA) [19]. The rate depends on the product of
the condition numbers of the strongly convex objective
function and the constraint matrix; see Section II-C for
details. Interestingly, with an appropriate stepsize selection,



the continuous-time counterpart of GDA can attain a con-
vergence rate that is independent of the condition number of
the constraint matrix [20]. Although continuous-time guar-
antees do not directly translate to discrete-time settings, this
observation motivates the question of whether the worst-case
convergence rate of a discrete-time gradient-based algorithm
can be determined solely by the larger of the two condition
numbers. In this paper, we take a step toward addressing
this question. Leveraging the aforementioned framework,
we design a single-loop gradient-based algorithm whose
convergence rate depends only on the condition number of
the objective function, provided this condition number is
larger than that of the constraint matrix.

The rest of the paper is organized as follows. In Section II,
we define the problem and introduce a control-theoretic
formulation for algorithm design. We also outline desired
specifications and discuss the relevant literature. In Sec-
tion III, we present the framework for automated algorithm
synthesis within considered algorithm class and obtain the
main result. In Section IV, we use computational experiments
to demonstrate the validity of our theoretical findings and,
in Section V, we offer concluding remarks.

II. PROBLEM FORMULATION AND A CLASS OF
ALGORITHMS

We consider a constrained convex optimization problem,

minimize f(z)
: (M
subject to Fx — q = 0
where x € R" is the optimization variable, f: R™ — R is the
objective function, and £ € R4*", ¢ € R? are parameters in
the linear constraint. Without loss of generality, we assume
that £ is a symmetric positive semidefinite matrix. This
assumption is not restrictive because multiplying the equality
constraint in (1) by ET does not change the feasible set.
Hence, in our analysis the constraint can be replaced with
ETEx = ETq without the need to explicitly construct £ T F
in our algorithm (only matrix-vector multiplication involving
ET and E is required). We also note that the feasibility of
equality constraint implies that £ E is a singular matrix.

Assumption 1: The equality constraint is homogeneous,
i.e., ¢ = 0. The constraint matrix £ € R™ "™ is singular,
symmetric, and positive semidefinite, i.e., £ = ET > 0.

When g # 0, the homogeneity assumption can be satisfied
by writing the constraint as ET E(z — ) = 0 where 7 is a
feasible solution, and then replacing x in (1) with x + Z.

We also make the following assumption on the objective
function, which is standard in the design of linearly conver-
gent algorithms.

Assumption 2: The objective function f in (1) is m-
strongly convex with an L-Lipschitz continuous gradient V f.

In the remainder of this section, we utilize the Z-transform
to represent a class of algorithms that we consider and outline
design specifications. We also discuss the existing works on
the lower complexity bounds within this class.

A. Algorithm representation

We examine gradient-based optimization algorithms.
These can be described by three transfer functions which
are (potentially) parameterized by the constraint matrix E:

e Ko(z,E) determines the mapping between the opti-
mization variable and the input into a gradient;

e Ki(z, E) determines how the past iterates are used to
update the optimization variable;

o KC3(z, E)) determines how the past gradients are used to
update the optimization variable.

Let (%) and ﬂ(z) be the Z-transforms of sequences of
iterates {z*}2°, and gradients {V f(z*)}22,. Algorithms
that we consider take the following form,

2Ko(z, B)3(2) = Ki(2, E)2(2) + Ka(z, E)Vf(2). (2)

While Ky(z, E) is the identity matrix in many cases, it plays
a crucial role for accelerated methods such as Nesterov’s ac-
celerated algorithm [1] or two-step momentum method [21].
In addition to the momentum-based accelerated methods,
distributed algorithms such as EXTRA [22], DIGing [23], or
ABN [24], can also be brought into the form given by (2);
see [14] for additional details.

We next demonstrate that formulation (2) encompasses not
only centralized or distributed algorithms for unconstrained
minimization but also primal-dual methods for optimization
problems with equality constraints.

As an illustration, let us consider the gradient descent-
ascent algorithm associated with (1) [19],

b — al(Vf(") + ETyY)
yk + apEzF

S

(3a)

k+1 (3b)

y =

where o and oo are the stepsizes. The Z-transform of (3)
can be used to eliminate the dual variable y(z),

(221 — 220 + I + ozlozzETE) Z(z) = an(1— z)ﬂ(z)
and the division of this equation with z leads to (2) with,
IC()(Z,E) =1
Ki(z,E) =21 — (I + cqasETE)z7 !
Ko(z,E) = —ay(1 — 2711

We note that the dual update in (3) can be replaced by its
incremental variant (also known as the alternating GDA),

Yt = yF b apExt

This asynchronous version of a primal-dual algorithm can
similarly be represented by (2) with the only change,

Ki(z,E) = 21 — aqauE'E — 2711,

Furthermore, the primal-dual algorithm based on the prox-
imal augmented Lagrangian [25] associated with (1) can
be also cast within the same framework. Thus, a broad
class of optimization algorithms can be represented using
characterization (2).



B. Design specifications

We next discuss desired specifications for algorithms that
we aim to design to solve optimization problem (1).

1) Explicitness: To design a single-loop algorithm, we
need to avoid circular dependence in the evaluation of z*+1,
In other words, the computation of 2**1 should not exploit
Ex**1 or V f(2*+1). This requirement can be relaxed if one
can afford to utilize linear system solvers [26] or evaluation
of proximal operators [16] in the iterative scheme.

2) Optimality: The algorithm should asymptotically con-
verge to a solution * of problem (1). Under Assumption 1,
the necessary and sufficient conditions for x* are given by,

Vfx*) € R(ET), =* € N(E) (4a)

where R and N are the range and null spaces of a given
matrix. These inclusions can alternatively be characterized by
the existence of vectors 67 € R” and w3 € R™~" such that

Vi(x*) = Vo7, z* = Vaws. (4b)

Here, » < n determines the rank of the matrix £ with the
singular value decomposition

¥ 0 174
s-on a3 E[H] e
where ¥ = diag(oy,...,0.),

=01 220 =20 >0,

and the columns of matrices V; € R™*" and V5 € R™"*"~7
form the respective orthonormal bases of R(E ) and N'(E).
We use kg := &/g to denote the (effective) condition
number of F and k¢ := L/m to denote the condition number
of the strongly convex objective function f.

Because of Assumption 2, problem (1) has a unique
solution, implying uniqueness of 47 and wj as well.

3) Linear convergence: For a class of optimization prob-
lems (1) under Assumptions 1 and 2, we require algorithms
to linearly converge at a rate of, at least, p. The linear
convergence implies the existence of p € (0,1) and M > 0
that are independent from the initial condition x° such that,

le* — 2*|| < M|2® — 2*lp". (6)

In contrast to the existing approaches, such as [17],
the above framework provides not only asymptotic conver-
gence guarantees but also a, possibly non-conservative, lower
bound on the worst-case convergence rate for algorithms that
satisfy all design specifications.

C. Discussion of the existing literature

Any gradient-based algorithm for solving problem (1)
under Assumption 2 has to satisfy a lower bound |z* —
x*|| > ¢/k? for some constant c if the problem is infinite
dimensional or the number of iterations is smaller than half
the problem dimension [27]. However, this sublinear lower
bound does not preclude the possibility of achieving linear
convergence characterized in (6) due to scaling factor M. An

algorithm with a convergence rate matching the lower bound
in unconstrained minimization setting is proposed in [28], but
it utilizes a linear solver along the iterations and, therefore, is
not a single-loop method. To our knowledge, the best known
rate among the algorithms satisfying desired specifications is
achieved by the (non)incremental GDA [19], [29],
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III. AUTOMATED ALGORITHM SYNTHESIS

Herein, we formulate the algorithm design as a controller
synthesis problem and provide analytical characterization of
design specifications in terms of the underlying transfer func-
tions in (2). By recasting control synthesis as an interpolation
problem we provide a solution that leads to an implementable
optimization algorithm with a guaranteed convergence rate.

A. From algorithm to controller design

The class of optimization algorithms given by (2) can be
viewed as a Lur’e system, i.e., a feedback interconnection of
an LTI system and a static nonlinear block. The LTI system in
Fig. 1 can be represented by Z(z) = H(z, E)V f(z), where

H(z, E) = (2Ko(2, E) — K1(2,E))'Ka(z, E)  (8)
and the static nonlinear block takes the form,
A(e?) = V(e +a*) — Vf(z*) ©)

with the error defined as eF := zF

the nonlinear map (9) satisfies,

mllel|* < (A(e),e) < Llle]|*, Ve € R

—2*. Under Assumption 2,

thereby implying sector-boundedness of A in [m, L].

Vi) K
S+

= H Vf(a*)

Fig. 1. A class of optimization algorithms given by (2) can be viewed as
a feedback interconnection of an LTI system with a static nonlinear block.

In contrast to a conventional interpretation, the plant in this
control system is represented by a static nonlinear block A.
Our goal is to design a linear controller H(z, E), which
represents the optimization algorithm, to track step inputs
~Z7 «* with unknown magnitudes z* while rejecting the
step disturbances —*5 V f(x*) with unknown magnitudes
V f(z*) for all possible sector-bounded plants A in [m, L.
The controller is parameterized by a constraint matrix E of
a rank r < n with singular values o; € [0,5], i =1,...,r.

Before discussing design specifications, we employ a
standard technique to transform the Lur’e system into a form
that is convenient for analysis/synthesis.



1) Coordinate transformation:
using the singular vectors of F,

T VlTx _
w.—Vx—{VQTx

The change of variables

(10)

together with the definitions

wq :|’w*:VTx*:|:0*:|

wy — W

ezVTe:[

5= VIA(Ve) = [gj 5 = VIVf(a*) = ﬁ)l]

can be used to cast the transfer function in Fig. 1 as,

H(zE) = [ Vi ‘“{H(B’E) H(g,mHgﬂ'

The resulting two linear systems are coupled by the nonlinear
block, as shown in Fig. 2. Since these subsystems are in
the diagonal form, they can be further split into the scalar
systems, each of which shares the same scalar transfer
function parameterized by either singular values or zero,

H(z,%) = diag ({h(z,0:)}—1), H(2,0) = h(z,0)I,_,.

Our task is to design a scalar transfer function h(z, o)
with parameter o taking an arbitrary value within the interval
[o, 5] or being equal to zero.

<1

o LT

Wil H(z, %)

Wa (2,0)

Fig. 2. Decomposition of an LTI system in Fig. 1 into two subsystems
coupled by the static nonlinear element A.

2) Loop transformation: To make nonlinear component
A sector-bounded in [0,00), we apply loop transforma-
tion [30, Sec. 6.5] to the feedback interconnection in Fig 1.
This transformation enables the use of standard passivity-
based stability criteria without introducing additional conser-
vatism. Specifically, the transformation takes the pair (H, A)
with sector-bounded A in [m, L] as input and gives the
pair (H,A) with transformed nonlinearity A being sector-
bounded in [0, 00) as output. The one-to-one correspondence
between the two transfer functions is given by

H(z, E) = (mH(z,E) — LI)"*(H(z,E) — I). (11)

In contrast to H, H has to be a stable transfer function to
guarantee stability of the transformed Lur’e system; this is

because A is sector-bounded in [0, c0).
Using coordinate transformation (10), we can also diago-
nalize the transformed linear system,

H(z, %) = diag ({h(z,0:)}—1), H(2,0) = h(z,0)I,_,

with the following one-to-one relation between A and h,

h(z,0) — 1
mh(z,0) — L’

B. Analytical characterization of design specifications

h(z,0) = (12)

We next obtain conditions for transfer function h(z, o) to
satisfy design specifications outlined in Section II-B.

1) Explicitness as causality: A necessary condition for
explicitness is the strict causality of the linear controller
in the Lur’e system. The controller is strictly causal when
transfer function #(z, E) is strictly proper, i.e, H (oo, E) =
0. Using the correspondence in (11), this is equivalent to

H(oo, E) = I, and the scalar transfer function should satisfy

h(co,0) = 1, VYo € [g,5] U {0}. (13a)

2) Optimality as input tracking and disturbance rejection:
The asymptotic convergence of the optimization algorithm
to the optimal solution is equivalent to the asymptotic
tracking of the step input %7 2* and rejection of the step
disturbance 25 V f(z*) in the Lur’e system. To achieve
this goal, the subsystems H(z,X) and H(z,0) must have
a blocking zero and a pole at z = 1, respectively. This
follows from internal model principle [31]. For exogenous
signals (4), Proposition 1 establishes that these conditions
are not only sufficient but also necessary for input tracking
and disturbance rejection.

Proposition 1: Let the feedback interconnection in Fig. 1
be stable for any sector bounded nonlinearity A in
[m, L]. The error asymptotically converges to zero, i.e.,
limy,_,o0 €® = 0, if and only if the transformed scalar transfer
function satisfies

L,

h(l,0) =
(1,0) { L.
Proof: See Appendix. [ |

3) Linear convergence as p-stability: A necessary and
sufficient condition for linear convergence of the synthesized
algorithm is the p-stability of the Lur’e system in Fig. 1. We
use the circle criterion [30, Sec. 7.1] to certify the p-stability.

o
(13b)
o

The circle criterion implies p-stability of the transformed
Lur’e system (7, A), with sector-bounded nonlinear block A
in [0, 00), if the scalar transfer function h(~yz,o) is strictly
positive real for all v € (p,1]. This can be equivalently
expressed as,

i) h(y2,0) € RHoo

. - : (13¢)

ii) Re (h(yz,0)) > 0, V2 € D° o € [g,5] U{0}.
for all v € (p, 1], where RH . denotes set of real, rational,
stable transfer functions, Re(+) is the real part of a complex
number, and D := {z € C, |z| < 1}.



C. From controller design to interpolation

Design of a scalar transfer function A that satisfies causal-
ity (13a), tracking (13b), and p-stability (13c) conditions can
be cast as the following interpolation problem:

Find a p € (0,1) and design h(z, o) such that

(P1)
conditions in (13) hold for every v € (p, 1].

Direct application of the Nevanlinna-Pick interpolation
technique [32, Ch. 9] to problem (P1) is not possible because
of conditional statement (13b) for different values of o.
Hence, following [14], we adopt a greedy approach to obtain
a solution as outlined below.

Since interpolation condition (13b) includes two cases
(0 € [o,5] or o = 0), we first construct a candidate solution
(p1,h1(z,0)) to (P1) with conditions (13) applied only to
o € [o,5]. Similarly, we obtain another candidate solution
(p2, ha(2)), ensuring that conditions (13) hold for ¢ = 0.
We then combine these to obtain a solution to problem (P1)
by setting p = max(py, p2) and defining h(z, ) = hy(z,0)
while enforcing h(z,0) = ho(z). The last step leverages the
additional degrees of freedom offered by the Nevanlinna-
Pick interpolation. Lemmas 1 and 2 provide a solution to
problem (P1) for o € [0,5] and o = 0, respectively.

Lemma 1: All transfer functions satisfying

h(yz,0) € RHo
h(co,0) = h(l,0) = 1
Re(h(yz,0)) > 0, z € D°

for all v € (0,1] and o € [g, ] are given by

2z =) 4+ 3(z0)0z = 1)
2(z =) = g(z0)(vz - 1)
where g(z,0) € RHo and ||§(z,0)]|e0 < 1, Vo € [a,5].

Proof: The proof is a direct application of Nevanlinna-
Pick interpolation; see [14, Prop. 1] for details. |

hi(yz,0) = (14)

Lemma 2: A transfer function satisfying

h(vz) € RHoo
h(oo) =
h(1) = /
Re(h(yz)) > 0, z € D°

for v € (p,1] exists if and only if p > (L —m)/(L + m).
Furthermore, for p = (L—m)/(L+m), the transfer function
that satisfies all four conditions is unique and is given by,

- z +
ha(vz) = ; - Z (15)

Proof: See [14, Theorem 5]. |

We combine two candjdate solutions (14) and (15) as
described above: we set h(z,0) = hi(z,0) and determine
g(z,0) in Lemma 1 to ensure h(z,0) = ha(z). This yields,

1l z-0p

9(2,0) = bz —1/p

where I 9
—m
P = T+m Ky + 1 (16)
This brings interpolation problem (P1) to:
Design g(z, o) such that
G(z,0) € Hoo and ||g(2,0)]|eo < 1, o > 0 P2)
1 i
g(z,0) = o=0
z—1/p
A solution to problem (P2) is given by
_ 1l—-—0z2— %U
G(z,0) = — — = a7)
poz— L
with additional restrictions on the singular values,
2m
<1 18
m + L Sos (18)

This solution was obtained by moving the unstable pole at
1/p of g(z,0) inside the unit circle by ensuring that the H
norm of g(z, o) is less than one.

D. Algorithm synthesis

We are now ready to cast the transfer functions obtained
in Section III-C in terms of their state-space realizations,
thereby leading to an implementable optimization algorithm.

Substitution of h given by (14) into (12) yields the
following transfer function for h,

h(z,0) = o+ 9(z.0)

where
o z—1
9(z,0) = pg('z/pva)z — 2

an (1—-o)z—p*z-1
z2—(1—-0) z—p*
Furthermore, the definition of A in (8),
ka(z,0)
zko(z,0) — ki(z,0)

allows us to determine the transfer functions kg, k1, and ks.
In particular, setting kq(z,0) = 1 gives

h(z,0) =

ki(z,0) = —g(z,0), kao(z,0) = Limg(z,a)
and, as a result, we have

Ko(z,E) =1 (19a)

Ki(z,E) = Z_;pg (zI —=W) " (Wz—p?I)  (19b)

Ko(z,E) = —(1—p)K1(z, E) (19¢)

where W := I — E. The remaining task is to obtain a state-
space realization for the input-output map (8) based on the
transfer functions given in (19).

Since Ko = I and K5 is a scaled version of K, we have

2(z) = —(1 — p)(zI — K1(z,E))"'Vf(z).  (20)



This equation can be used to obtain an input-output recursion
that relates V f(x*) and z*,

3
§ Aixk'” _
i=0

and a corresponding state-space realization of (21) using the
observer canonical form,

3
B,V f(a") 1)
0

7=

k41— Ak + BV f(z*
0 0 f(@") (222)
k= Oy,
Here,
—Ay I O By I
A=| -4, 0 I |,B=|B |,C"'=]0
—As 0 O By 0
(22b)
and
Aoy = —p*I, By = —(1-p)p?I

A = 1+ )W + p*I, By = (1—p)(p* I+ W)
Ay = —(2W + p*I), B = —(1-p)W

Az = 1T Bs = 0.
(22¢)
Equivalently, state-space model (22) can be cast in terms of
the following recursion,

uf = a2b — (1= p)Vf(a") (23a)
yk — W(yk—l +uk> _ p2uk—1 (23b)
SCk+1 _ szk + yk: o ykfl (230)

with the initial condition y~' = v~ = 0.

Theorem 1: Let Assumptions 1 and 2 hold. If the singular
values of the constraint matrix £ belong to the interval
(2/kys,1], where ky = L/m, then algorithm (23) converges
linearly to the unique solution of (1) with a rate of at least,

2
Psyn = 1 PRNIEE (24)
Remark 1: While the upper bound on the singular values
can easily be satisfied by scaling the equality constraint with
its largest column-sum or its trace, the lower bound requires
the condition number of E to be smaller than half the

condition number of the objective function, ky/2 = L/(2m).

Remark 2: For problem (1) with a rectangular constraint
matrix £ € R, both algorithm (23) and incremental
GDA (3) perform only one gradient computation and one
matrix-vector multiplication with £ and ET per iteration.
However, while (23) has a realization with 3n states, the
incremental GDA has n + d states.

IV. COMPUTATIONAL EXPERIMENTS

We demonstrate the merits and the effectiveness of our
algorithm for the quadratic objective function in (1),

fz) =

For the problem with n = 100 optimization variables and
d = 100 constraints, we randomly select problem data () €

1
3 ' Qz + p'.

R™ " E € R¥>" and p € R™ with ¢ = 0 in (1). The
eigenvalues of ) are scaled such that L = Ay, (Q) = 2000
and m = Apnin(Q) = 1. We generate three instances of
constraint matrices I, Ey, and F5 with the corresponding
singular values scaled such that the largest singular values
are the same and equal to o; = 1, but the smallest singular
values take different values o, = 0.1, 0. = 0.01, and o, =
0.001, respectively, with » = 80. As a result, the (effective)
condition numbers of the constraint matrices are determined
by kg, = 10, kg, = 100, and kg, = 1000.

We perform computational experiments using our algo-
rithm (23) and the incremental GDA method (3) to compare
and contrast the influence of conditions numbers of constraint
matrices on the corresponding convergence rates. We set
all initial conditions to zero. To optimize the best known
convergence rate of the GDA method [19], [29], we set
a1 = (1 —kp")/L and ag = m/oy in (3). As illustrated
in Fig. 3, the convergence rate of our algorithm is invariant
under changes in condition number of the constraint matrix,
closely aligning with the theoretical bound. In contrast, the
convergence rate of the GDA algorithm significantly deteri-
orates as the condition number of F increases. Furthermore,
as suggested by the comparison of the convergence rates (24)
and (7), our algorithm converges substantially faster than the
GDA method in all computational experiments.

2

l* = a*[l/ll*|l

0 2 4 6 8 10 12
k (x10%)

Fig. 3. Convergence of algorithm (23) (blue) and the incremental GDA
method (3) (red) for problem (1). The lines with markers show convergence
of algorithms in the first (diamond), second (circle), and third (cross)
problem instances with the respective constraint matrices E£1, Eg, and E3.
While the condition number of the objective function is set to xy = 2000,
the (effective) condition numbers of the constraint matrices are kg, = 10,
kg, = 100, and kg, = 1000. The solid black line marks the theoretical
convergence rate psyn in (24); the black dash, dash-dot, and dot lines show
the rate pgq, in (7) for i = 1,2, 3, respectively.

V. CONCLUDING REMARKS

In this work, we leveraged robust control techniques for
the automated synthesis of optimization algorithms. Building
on the framework recently proposed in [14], [15], we de-
veloped a single-loop, gradient-based algorithm for solving
strongly convex optimization problems with linear equality
constraints. When the condition number of the constraint ma-
trix is smaller than that of the objective function, we demon-
strated that the algorithm’s convergence rate depends solely



on the objective function’s condition number. Under this
assumption, our approach offers a significant improvement
over existing methods—such as GDA—whose rates depend
on the product of both condition numbers. Promising future
directions include relaxing the assumption on the constraint
matrix, characterizing the fundamental performance limits of
gradient-based methods, and extending the framework to a
wider class of constrained optimization problems.

APPENDIX

Proof of Proposition 1: Sufficiency follows from the inter-
nal model principle. For necessity, we consider the following
equation representing the feedback interconnection in Fig. 1,

=) + )

z z

o = H(z E)(A(z) +

z—1 z —

where (2) and A(z) are the Z-transforms of the sequences
{ek}2e , and {A(e*)}5 ), respectively. Correspondence (11)
yields

(mH(z, E) — LI)((Z —1)e + za:*) R
= (H(z,E) — I)((z — DA(2) + sz(x*))

By assumption, the feedback interconnection is stable for
any sector-bounded nonlinearity A in [m, L], which implies
that the transfer function H(z, E) does not have any poles
on the unit circle, i.e., H(1, E) # oo. Therefore, evaluating
the above equation at z = 1 results in

(mH(1,E) — LI)z* = (H(1,E) — )V f(z*).

Coordinate transformation (10) in conjunction with optimal-
ity conditions (4b) gives

VZ(m/’q(LO) - LI)’w; = %(ﬁ(lvz) - 1)6){

which must hold for any 7 € R" and w; € R™™". Hence,

H(1,0) = (L/m),_,, HL,X) = I,.
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