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Abstract— We study composite optimization problems in
which the objective function is given by the sum of a
smooth strongly convex term and multiple, potentially non-
differentiable, convex regularizers. For a class of problems that
satisfy a structural property expressed in terms of a local error
bound condition, we establish the existence of a finite time after
which a primal-dual method based on the proximal augmented
Lagrangian converges exponentially fast to the set of optimal
primal-dual variables.

Index Terms— Gradient flow dynamics, error bound con-
dition, Lyapunov functions, operator splitting, proximal aug-
mented Lagrangian.

I. INTRODUCTION

We consider composite optimization problems of the form

minimize
x

f(x) +

r∑
i=1

gi(Tix) (1)

where x ∈ Rn is the optimization variable, f : Rn → R
is a continuously differentiable convex function, each gi:
Rmi → R is a possibly non-differentiable convex regular-
ization function, and each Ti ∈ Rmi×n is a matrix that
imposes regularization in the desired coordinates. Since gi’s
are allowed to be non-differentiable, constrained problems
can be brought into the form of (1) using indicator functions
associated with the convex sets. Hence, (1) has a broad
usage in applications that range from machine learning [1],
to statistics [2], and control theory [3]–[5].

Primal-dual methods provide an effective means for solv-
ing (1). These methods decouple regularizers and treat them
separately and they are convenient for distributed computing
and parallelization [2]. Stability and convergence of primal-
dual algorithms have been studied in various scenarios since
their introduction in the seminal paper [6] as a continuous-
time dynamical system. Early results [7], [8] focused on
global asymptotic stability of the primal-dual dynamics for
strictly-convex differentiable problems with inequality con-
straints. In [9]–[11], the asymptotic stability results were
extended to general convex-concave saddle functions and,
in [12], global exponential stability of the primal-dual dy-
namics was established for differentiable convex problems
with equality constraints. Primal-dual dynamics based on
the generalized augmented Lagrangian [13] were examined
in [14] and [15]; these references proved global exponen-
tial stability (for smooth problems with linear inequality
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constraints) and semi-global exponential stability (for dif-
ferentiable problems with smooth inequality constraints),
respectively.

In [16], the augmented Lagrangian was brought into a
continuously differentiable form by exploiting the structure
of the proximal operator associated with a non-differentiable
regularizer in (1). This approach was utilized to obtain
the Proximal Augmented Lagrangian (PAL), which is de-
termined by the sum of the smooth part of the objective
function and the Moreau envelope associated with the non-
differentiable regularizer. In contrast to the augmented La-
grangian, PAL is a continuously differentiable function of
primal and dual variables and the primal-dual dynamics can
be used to compute its saddle points. For the two-block case,
i.e., for r = 1 in (1), with strongly convex f and full-
row rank T , the primal-dual dynamics based on PAL are
globally exponentially stable in both continuous [16], [17]
and discrete [18] time and similar properties are enjoyed by
the second-order method based on PAL [19].

Although the aforementioned results have direct exten-
sions to the multi-block setup, the full-row rank assumption
on T := [TT

1 · · · TT
r ]T does not hold in applications that

arise in multi-block optimization (e.g., convex formulations
of neural networks [1], distributed averaging [2], [20], and
empirical risk minimization via support vector machines and
logistic regression [21]).

In the absence of the full-row rank assumption, even if
f is strongly convex, the primal-dual dynamics based on
PAL may have a continuum of equilibria because of non-
differentiable terms. This is the main challenge for proving
the global exponential stability. In this paper, we assume that
the problem satisfies a structural property expressed in terms
of a local error bound condition [22]. Similar assumption
was made in [23] to establish convergence of the Alternating
Direction Method of Multipliers (ADMM) for the multi-
block problem (1). Without making any rank assumptions
on T , we prove that, after a finite time, the primal-dual
dynamics based on PAL converges exponentially fast to the
equilibrium set. This together with the global asymptotic
stability result established in [24] imply the semi-global
exponential stability of the primal-dual dynamics based on
PAL (see [15] for the definition). The class of problems (1)
satisfies the local error bound condition for a broad class of
regularization functions including group lasso penalization
and indicator functions of polyhedral sets [23], [25]. Thus,
our results are applicable to convex problems with affine
constraints without requiring any constraint qualifications.

The rest of the paper is organized as follows. In Sec-



tion II, we provide the background material and introduce
the primal-dual gradient flow dynamics based on PAL.
In Section III, we discuss the local error bound condition and
utilize a Lyapunov-based approach to characterize stability
and convergence properties of the primal-dual dynamics. We
conclude the paper in Section IV with remarks.

II. PROBLEM FORMULATION AND BACKGROUND

To streamline our analysis, we define a separable function
g: Rm → R as

g(Tx) :=

r∑
i=1

gi(Tix) (2)

where m := m1 + · · · + mr and cast (1) as a two-block
convex composite optimization problem

minimize
x

f(x) + g(Tx). (3)

By introducing auxiliary variables z := [zT1 · · ·zTr ]T ∈ Rm,
we can rewrite problem (3) as

minimize
x, z

f(x) + g(z)

subject to Tx − z = 0.
(4)

The Lagrangian associated with (4) is given by

L(x, z; y) := f(x) + g(z) + ⟨y, Tx− z⟩

where y := [yT1 . . .y
T
r ]

T ∈ Rm is the vector of dual variables
associated with equality constraint Tx = z. For a given
positive parameter µ, the associated augmented Lagrangian is

Lµ(x, z; y) = L(x, z; y) +
1

2µ
∥Tx − z∥2

= f(x) + g(z) +
1

2µ
∥z − (Tx + µy)∥2 − µ

2 ∥y∥
2

where ∥·∥ denotes Euclidean norm. The first order optimality
conditions for (4) are given by

0 = ∇f(x⋆) + TT y⋆ (5a)

0 ∈ ∂g(z⋆) − y⋆ (5b)

0 = Tx⋆ − z⋆ (5c)

where ∂g denotes the subdifferential of g. Substitution of
(5c) into (5b) and the resulting inclusion into (5a) yield the
optimality condition for (3).

The minimizer of Lµ(x, z; y) with respect to z is given by
the proximal operator associated with the non-differentiable
components

z⋆(x, y) = argmin
z

Lµ(x, z; y) = proxµg(Tx+µy). (6)

Here, the proximal operator of g for a positive parameter µ
is the one-to-one mapping defined as [26]

proxµg := (I + µ∂g)−1. (7)

Alternatively, the proximal operator can be obtained as the

minimizer of the following optimization problem

proxµg(v) = argmin
z

(
g(z) +

1

2µ
∥z − v∥2

)
.

The value function of this optimization problem determines
the associated Moreau envelope,

Mµg(v) := g(proxµg(v)) +
1

2µ
∥proxµg(v) − v∥2

which is a continuously differentiable function, even for a
non-differentiable g, with 1/µ-Lipschitz gradient [27, Propo-
sition 12.30]

µ∇Mµg(v) = v − proxµg(v). (8)

The proximal augmented Lagrangian is obtained by evaluat-
ing Lµ along the manifold determined by z⋆(x, y)

Lµ(x; y) := inf
z
Lµ(x, z; y) = Lµ(x, z

⋆(x, y); y)

= f(x) + Mµg(Tx + µy) − µ
2 ∥y∥

2.
(9)

Unlike the augmented Lagrangian, PAL is a continuously
differentiable saddle function. Minimizing PAL over primal
variable x yields the Lagrange dual function associated with
problem (4)

d(y) := minimize
x

Lµ(x; y) = Lµ(x
⋆(y); y) (10)

where x⋆(y) := argminx Lµ(x; y). The set of optimal dual
variables is denoted by Y⋆ := argmax d(y) and the set
of optimal primal variables is denoted by X ⋆. Since (4) is a
convex optimization problem with linear equality constraints,
the strong duality holds [21], hence, we have x⋆(y⋆) ∈ X ⋆

for any y⋆ ∈ Y⋆. Moreover, the optimal value of problem (4)
equals to the dual optimal value d⋆ := max d(y).

The proximal augmented Lagrangian (9) is a convex-
concave saddle function and its saddle points that satisfy
the following chain of inequalities

Lµ(x
⋆; y) ≤ Lµ(x

⋆; y⋆) ≤ Lµ(x; y
⋆), ∀x, y

are characterized by the following system of equations

0 = ∇f(x̄) + TT∇Mµg(T x̄ + µȳ) (11a)

0 = µ∇Mµg(T x̄ + µȳ) − µȳ. (11b)

Moreover, the set of saddle points characterized by (11)
is equivalent to the set of optimal primal-dual pairs given
by (5). To see this, substitute (11b) into (11a) which gives
(5a). Then, substitute expression (8) into (11b) to get

T x̄ = proxµg(T x̄ + µȳ) (12)

which means that T x̄ = z⋆(x̄, ȳ), hence (5c) is satisfied.
Lastly, one-to-one correspondence in (7) together with (12)
gives that ȳ ∈ ∂g(T x̄) and (5b) is satisfied. The converse
direction can also be shown by following similar steps.
Consequently, a solution to problem (1) can be found by
computing a saddle point characterized by (11). To this end,
we deploy the scaled Arrow-Hurwitz-Uzawa gradient flow



dynamics

ẋ = −∇xLµ(x; y) = −∇f(x) − TT∇xMµg(Tx + µy)

ẏ = α∇yLµ(x; y) = α
(
Tx − proxµg(Tx + µy)

)
(13)

where x: [t0,∞) → Rn, y: [t0,∞) → Rm, and t0 is
the initial time. The equilibrium points of (13) are clearly
the same as the saddle points given by (11). Here, α ∈
(0, 1] is the scaling parameter that enforcers time separation
between primal and dual flows [28]; it determines the rate of
slowing down in the dual dynamics. In discrete time, α < 1
corresponds to having smaller step sizes for dual updates. As
α → 0, the trajectories resulting from (13) become similar
to the primal-dual sequence generated by the method of
multipliers.

Owing to the separable structure in (2), minimizer z⋆(x, y)
in (6) takes the following form

z⋆(x, y) =

 z⋆1(x, y1)
...

z⋆r (x, yr)

 =

 proxµg1(T1x + µy1)
...

proxµgr (Trx + µyr)


and the associated Moreau envelope can be written as the
sum of individual envelopes associated with each regularizer

Mµg(v) =

r∑
i=1

Mµgi(Tix + µyi).

As a result, primal-dual dynamics (13) can be implemented
by using multiple blocks as

ẋ = −∇f(x) −
r∑

i=1

TT
i

(
yi + 1

µα ẏi

)
ẏ = α

(
Tix − proxµgi(Tix + µyi)

)
, i = 1, . . . , r

where yi–blocks can be run in parallel since they are
independent from each other.

We next introduce the local error bound condition and
utilize a Lyapunov-based approach to analyze stability and
convergence rate of the primal-dual dynamics.

III. EXPONENTIAL CONVERGENCE OF
PRIMAL-DUAL DYNAMICS

Throughout our analysis, we have the following main
assumption on the differentiable part of problem (4).

Assumption 1: Let function f be mf -strongly convex and
its gradient ∇f be Lf -Lipschitz continuous.

Under Assumption 1, the proximal augmented Lagrangian
Lµ is strongly convex in x and the set of optimal primal
variables X ⋆ is a singleton. However, even if problem (1)
under Assumption 1 is strongly convex, the set of optimal
dual variables Y⋆ may not be a singleton. Using optimality
conditions (5), it can be easily shown that Y⋆ is given by
the intersection of ∂g(Tx⋆) and an affine set determined by
the null space of TT ; hence Y⋆ can be even unbounded.

If in addition to the strong convexity assumption the matrix
T is full row rank, Y⋆ also becomes a singleton. In that case,
dynamics (13) with α = 1 are globally exponentially stable

for problem (3) with a single non-differentiable regularizer
[16], [17]. This immediately implies the global exponential
stability of the multi-block problem (1) due to the equiva-
lence between (1) and (3). However, since the full-row rank
assumption on T is restrictive for problems with several
regularizers, we do not made it in this paper.

When T is not full-row rank1, the set of equilibrium points
becomes a continuum which may not even be bounded;
yet, the classical notion of stability is mainly defined for
compact sets [30, Section 4.7-4.9]. In our work, we focus
on the convergence properties of dynamics (13). We assume
that the problem satisfies a structural property that gives a
local bound on the distance to Y⋆ and we utilize this bound
to prove the exponential convergence rate. This structural
property allows us to avoid making any assumptions on the
rank of T and gi’s are allowed to be indicator functions of
polyhedral sets. On the other hand, the local error bound con-
dition allows us to establish exponential decay of trajectories
to the set of equilibrium points of primal-dual dynamics only
after a certain finite time.

A. Local (dual) error bound condition

The local error bound condition holds if the inequality

dist(y,Y⋆) ≤ γ∥∇d(y)∥ (14)

is valid when d(y) ≥ η and ∥∇d(y)∥ ≤ δ, where

dist(y,Y⋆) := argmin
ν ∈Y⋆

∥ν − y∥

and η, γ, and δ are real parameters. Strong concavity of
the dual function immediately yields an upper bound on the
distance to Y⋆ and the error bound condition provides a
local substitute for it. In the absence of strong convexity of
the objective function, similar error bounds were utilized to
prove linear and even superlinear convergence for different
methods, including the interior point, proximal gradient, and
coordinate descent algorithms [31].

The next lemma discusses classes of functions for which
local error bound condition (14) holds for problem (4).

Lemma 1: Let each gi be given by gi(x) = hi1(Eix) +
hi2(x) where

1) hi1 is a strictly convex differentiable function and Ei ∈
Rmi×n.

2) hi2 is either
a) a polyhedral function or
b) group lasso penalization, i.e.,

hi2(x) = λ∥x∥1 +
∑
I

ωI∥xI∥2

where x = [ · · · xT
I · · · ]T is a partition of x with

ωI ≥ 0 and I is a partition index.
Then, for any scalar η, there exist δ and γ such that the
local error bound condition (14) holds for (4). Moreover, γ
is independent of x and y.

1In this case, Mangasarian-Fromovitz constraint qualification, that guar-
antees the boundedness of Y⋆ for differentiable functions [29], does not
hold.



Proof: Since dynamics (13) are globally asymptotically
stable [16], [24], its trajectories remain inside a compact
set for all times. Then, together with the strong convexity
assumption, all conditions in [23, Lemma 2.3] are satisfied
and Lemma 1 becomes a corollary of [23, Lemma 2.3];
see [32, Theorem 4.1] and [31] for additional details.

Remark 1: Since Ei can be rank-deficient or possibly
zero, Lemma 1 does not require gi to be strictly convex.
Thus, hi1’s are also allowed to be equal to zero.

Epigraph of a polyhedral function can be expressed as
the intersection of finitely many halfspaces. Examples of
such functions include, but are not limited to, piece-wise
affine functions, ℓ1 and ℓ∞ norms, and indicator functions
of polyhedral sets. Among other applications, the classes
of functions described in Lemma 1 arise in empirical risk
minimization and sparse signal recovery [31]. Additional
details about the relation between the error bound, quadratic
growth, and proximal Polyak-Lojasiewicz conditions can be
found in [33], [34].

B. Lyapunov-based analysis

We start our analysis by proposing a Lyapunov function
candidate

V (x, y) := Lµ(x; y) − d(y) + d⋆ − d(y) (15)

which represents the sum of the primal gap Lµ(x; y)− d(y)
and the dual gap d⋆ − d(y). In [23] it was observed that V
given by (15) decreases along the trajectories of ADMM but,
to the best of our knowledge, V (x, y) was not previously
utilized for a Lyapunov-based analysis of the primal-dual
gradient flow dynamics.

We next show that V (x, y) given by (15) is a strict Lya-
punov function for (13), which implies the global asymptotic
stability of the corresponding equilibria.

Lemma 2 (Strict Lyapunov Function): The time deriva-
tive of V (x, y) in (15) along the trajectories of primal-dual
dynamics (13) with parameter α ∈ (0,m2

f∥T∥
−2
2 /4) satisfies

V̇ ≤ −c0
(
∥∇xL(x; y)∥2 + ∥∇d(y)∥2

)
where c0 = min(α, 1− 4α∥T∥2/m2

f ).
Proof: See Appendix B.

Since Lµ is convex in x and d is a concave function of
y, V̇ (x, y) = 0 if and only if (x, y) ∈ X ⋆ × Y⋆. This
implies that V in (15) is a monotonically decreasing function
of time along the trajectories of (13). Moreover, Lemma 3
shows that the norms of ∇xLµ and ∇d are upper bounded
by V and, thus, they decay to zero at the same rate as V . In
Corollary 6, we use this fact to prove that the distance to the
equilibria decreases exponentially fast. We note that in the
rest of the paper Lx and Ly denote the Lipschitz parameters
of ∇xLµ(x; y) and ∇d, respectively. The explicit expressions
for Lx and Ly are provided in Lemma 7 of Appendix A.

Lemma 3 (Decaying Gradient): The time derivative of V
along the solutions of (13) satisfies c1V ≥ −V̇ , where c1 =

2max(Lx, Ly). Thus, ∥∇xLµ(x; y)∥ → 0 and ∥∇d(y)∥ →
0 as t → ∞.

Proof: See Appendix C.

In Lemma 4, we establish a quadratic upper bound on V in
terms of the distance to Y⋆ and, in Thereom 5, we utilize this
quadratic upper bound in conjunction with the error bound
condition to derive an upper bound on V̇ in terms of V .

Lemma 4 (Quadratic Upper Bound): Along the trajecto-
ries of primal-dual dynamics (13), the Lyapunov function
V (x, y) in (15) is upper bounded by

V (x, y) ≤ c2
(
∥x − x⋆(y)∥2 + dist2(y,Y⋆)

)
where c2 = (1/2)max (Lx, µ).

Proof: See Appendix D.

We next prove our main result, which implies that, after a
finite time, the Lyapunov function decreases at an exponen-
tial rate.

Theorem 5: Let g satisfy Lemma 1. Then, there exists
t1 ∈ (t0,∞) such that the Lyapunov function V in (15)
for primal-dual gradient flow dynamics (13) with parameter
α ∈ (0,m2

f∥T∥
−2
2 /4) satisfies

V̇ (t) ≤ −ρV (t) for all t ≥ t1

where ρ = (c0/c2)min(m2
f , γ

−2) and γ is the error bound
parameter.

Proof: Let V (t) denote Lyapunov function (15) along
the trajectories of (13). Lemma 2 implies that V (t) is
monotonically decreasing outside the equilibria; thus, the
primal and dual gaps are bounded from above since both are
non-negative. Hence, dual function d(y) is bounded below
by d⋆ −V (0). Let η := d⋆ −V (0); by Lemma 1, there exist
positive constants δ and γ such that inequality (14) holds
when ∥∇d(y)∥ ≤ δ. Furthermore, Lemma 3 guarantees the
existence of a finite t1 > t0 such that ∥∇d(y)∥ ≤ δ for
t ≥ t1. Consequently, error bound (14) holds when t ≥ t1,
which allows us to derive the following upper bound on V (t)

V ≤ c2(∥x − x⋆(y)∥2 + dist(y, Y⋆)2)

≤ c2(∥x − x⋆(y)∥2 + γ2∥∇d(y)∥2)

≤ c2(m
−2
f ∥∇xLµ(x; y)∥2 + γ2∥∇d(y)∥2)

≤ c2 max(m−2
f , γ2)

(
∥∇xLµ(x; y)∥2 + ∥∇d(y)∥2

)
≤ − (c2/c0)max(m−2

f , γ2)V̇

where the first line follows from Lemma 4, the second line
is obtained using (14), the third line is a consequence of
the strong convexity of Lµ with respect to x, and the last
inequality follows from Lemma 2.

An immediate consequence of Theorem 5 is that the dis-
tance of the solution to (13) to the equilibrium set decreases
exponentially fast after a finite time.

Corollary 6: For t ≥ t1, the distance of the solution
to (13) to X ⋆ and Y⋆ obey the following exponentially



decaying upper bound

∥x(t) − x⋆∥ ≤ c3(2/ρ)e
−ρ(t − t1)/2

dist(y(t), Y⋆) ≤ c3γ e
−ρ(t − t1)/2

where c3 =
√
(c1/c0)V (t1).

Proof: See Appendix E.
Remark 2: Although the exponential convergence rate in

Corollary 6 holds only for t > t1, a global algebraic conver-
gence rate can be established using Lyapunov function (15).
In conjunction with Corollary 6, this implies the existence
of a global exponential upper bound on the distance to the
set of equilibrium points. Since this bound depends on the
initial condition, primal-dual gradient flow dynamics (13) are
semi-globally exponentially stable.

The regularizers in Lemma 1 are allowed to be indicator
functions of polyhedral sets. Hence, the exponential rate
given in Corollary 6 is also valid for convex problems
with affine constraints and, in contrast to [14], we do not
have any constraint qualifications or any assumptions on the
matrices Ti. Furthermore, our results hold for a class of
non-differentiable regularizers that are widely encountered
in machine learning and statistics applications.

IV. CONCLUDING REMARKS

We have considered a class of composite optimization
problems where the objective function can be expressed as
the sum of a smooth convex term and multiple possibly non-
differentiable convex regularizers. For primal-dual dynamics
based on the proximal augmented Lagrangian, we show that
under a local bound condition on the distance to the dual
solutions the dynamics converge exponentially fast to the
set of equilibrium points. Since this structural property is
satisfied by a broad class of functions, including indicator
functions of polyhedral sets, our analysis covers convex
problems with linear equality and inequality constraints.

APPENDIX

In what follows, we omit the arguments of functions
whenever it is easy to infer them from the context.

A. Lipschitz Continuity of ∇xLµ and ∇d

Lemma 7: The gradients ∇xLµ and ∇d are Lipschitz
continuous with moduli Lx = Lf + ∥T∥2/µ and Ly = µ,
respectively.

Proof: The Lipschitz continuity of ∇xLµ over x
follows from the Lipschitz continuity of ∇f and ∇Mµg [27,
Proposition 12.30].

We now show the Lipschitz continuity of ∇d. For arbitrary
y and y′, let ỹ = y − y′, x̃ = x⋆(y) − x⋆(y′), ∇̃f =
∇f(x⋆(y)) − ∇f(x⋆(y′)), and z̃ = proxµg(Tx

⋆(y) +
µy) − proxµg(Tx

⋆(y′) + µy′). Since x⋆(y) and x⋆(y′)
are minimizers of Lµ(x; y) over x evaluated at y and y′,
respectively, ∇xLµ vanishes at these points. Hence, we have

0 = ⟨∇xLµ(x
⋆(y); y) − ∇xLµ(x

⋆(y′); y′), x̃⟩
= ⟨∇̃f + TT ỹ + 1

µT
TT x̃ − 1

µT
T z̃, x̃⟩

and monotonicity of ∇f implies

⟨TT ỹ, x̃⟩ + 1
µ ∥T x̃∥2 ≤ 1

µ ⟨z̃, T x̃⟩.

Completion of squares along with the nonexpansiveness of
proximal operator yields

∥T x̃− z̃∥2 ≤ −⟨µỹ, T x̃⟩ − ⟨z̃, T x̃⟩ + ∥z̃∥2

≤ −⟨µỹ, T x̃⟩ + ⟨µỹ, z̃⟩
= ⟨µỹ, z̃ − T x̃⟩

and Cauchy-Schwarz inequality completes the proof.

B. Proof of Lemma 2

From (10), V (x, y) = 0 if (x, y) ∈ X ⋆×Y⋆ and V (x, y) >
0 otherwise. Thus, V is strictly positive outside the equilibria.
The time derivative of V along the solutions of (13) satisfies

V̇ = ⟨∇xV, ẋ⟩ + ⟨∇yV, ẏ⟩
= ⟨∇xLµ, ẋ⟩ + ⟨∇yLµ − 2∇d, ẏ⟩
= −∥∇xLµ∥2 + α∥∇yLµ − ∇d∥2 − α∥∇d∥2

where the third equality is obtained by completing squares
in the second term in the second line. Since Lµ is strongly
convex in x, both X ⋆ and x⋆(y) are singletons for any y.
Hence, we can use Danskin’s Theorem [35, Prop. B.25] to
show that ∇d(y) = Tx⋆(y) − z⋆(x⋆(y), y). For a given y,
let x̄ = x⋆(y) and z̄ = z⋆(x⋆(y), y). The second term of V̇
can be upper bounded as

∥∇yLµ − ∇d∥2 = ∥T (x− x̄) − (z⋆(x, y) − z̄)∥2

≤ (∥T (x − x̄)∥ + ∥z⋆(x, y) − z̄∥)2

≤ 4∥T (x − x̄)∥2

≤ 4∥T∥2∥x − x̄∥2

≤ 4m−2
f ∥T∥2∥∇xLµ∥2.

Here, the first equality follows from (6), the second inequal-
ity follows from nonexpansiveness of the proximal operator,
and the forth inequality follows from the strong convexity of
Lµ in x. Substitution of this bound to V̇ and rearrangement
of terms complete the proof.

C. Proof of Lemma 3

The time derivative of V can be lower bounded as

− V̇ = ∥∇xLµ∥2 − α∥∇yLµ − ∇d∥2 + α∥∇d∥2

≤ ∥∇xLµ∥2 + α∥∇d∥2

≤ ∥∇xLµ∥2 + ∥∇d∥2

where the last line follows from α ∈ (0, 1]. By Lemma 7,
∇xLµ and ∇d are Lipschitz continuous, which implies

∥∇xLµ(x; y)∥2 ≤ 2Lx (Lµ(x; y) − d(y))

∥∇d(y)∥2 ≤ 2Ly (d
⋆ − d(y)) .

Substitution of these two inequalities into the lower bound
of V̇ gives the desired inequality. Furthermore, Lemma 2
implies that V is also an upper on the norm of ∇xLµ and



∇d. Since V is monotonically decreasing and non-negative,
we conclude that the gradients are decaying.

D. Proof of Lemma 4

Since ∇xLµ and ∇d are Lipschitz continuous, we have

d⋆ − d(y) ≤ (Ly/2)∥y − y⋆∥2

Lµ(x; y) − minx Lµ(x; y) ≤ (Lx/2)∥x − x⋆(y)∥2

where the first inequality holds for any y⋆ ∈ Y⋆. Summing
these two upper bounds completes the proof.

E. Proof of Corollary 6

Separation of variables along with Theorem 5 implies

V (t) ≤ V (t1) e
− ρ(t − t1) for all t ≥ t1

which together with Lemmas 2 and 3 for t ≥ t1 yield

dist(y(t), Y⋆) ≤ γ∥∇d(y(t))∥

≤ γ
√

(c1/c0)V (t)

≤ γ
√
(c1/c0)V (t1) e

− ρ(t − t1)/2.

Furthermore, the strong duality and convergence of dual
variable imply that x⋆(y(t)) → x⋆ as t → ∞ and application
of Lemmas 2 and 3 completes the proof,

∥x⋆ − x(t)∥ ≤
∫ ∞

t

∥ẋ(τ)∥ dτ

≤
∫ ∞

t

√
(c1/c0)V (t1) e

− ρ(τ − t1)/2 dτ

= (2/ρ)
√
(c1/c0)V (t1) e

− ρ(t − t1)/2.
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